Chinese Journal of Catalysis ›› 2025, Vol. 79: 32-67.DOI: 10.1016/S1872-2067(25)64817-0
• Reviews • Previous Articles Next Articles
Haotian Guoa, Lulu Zhaoa, Xinyu Liua, Jing Lib, Pengfei Wanga, Zonglin Liua, Linlin Wanga, Jie Shuc, Tingfeng Yia,b,d,*(
)
Received:2025-05-25
Accepted:2025-07-28
Online:2025-12-18
Published:2025-10-27
Contact:
Tingfeng Yi
About author:Ting-Feng Yi (School of Resources and Materials, Northeastern University at Qinhuangdao) received M.S. degree in 2004 and Ph.D. degree in 2007 from Harbin Institute of Technology. He joined the Anhui University of Technology as an assistant professor in 2007 and was promoted to a full professorship in 2011. His research focuses on electrocatalysis, water electrolysis and chemical energy conversation, combining experimental investigations with theoretical simulation. He has published over 240 peer-reviewed papers and holds 17 Chinese invention patents and 2 Dutch invention patents. His work has been cited over 11,000 times. In addition, as editor in chief, he also wrote two books: Electrode Materials for Lithium Ion Batteries, and Fundamentals and Applications of Sodium Ion Batteries. He was invited as a member of the Senior Editorial Board of Acta Physico-Chimica Sinica Since 2024.
Supported by:Haotian Guo, Lulu Zhao, Xinyu Liu, Jing Li, Pengfei Wang, Zonglin Liu, Linlin Wang, Jie Shu, Tingfeng Yi. Electrospinning technology combined with MOFs: Bridging the development of high-performance zinc-air batteries[J]. Chinese Journal of Catalysis, 2025, 79: 32-67.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64817-0
Scheme 1. Representative timeline of electrospun-MOF composite materials as oxygen electrocatalysts in the field of ZABs. All insets come from the literature. Reproduced with permission from Ref. [49]. Copyright 2020, Elsevier. Reproduced with permission from Ref. [50]. Copyright 2021, Wiley-VCH. Reproduced with permission from Ref. [51]. Copyright 2022, Wiley-VCH. Reproduced with permission from Ref. [52]. Copyright 2023, Elsevier. Reproduced with permission from Ref. [53]. Copyright 2024, Springer Nature. Reproduced with permission from Ref. [54]. Copyright 2025, Oxford University Press.
Fig. 1. (a) electrospinning equipment and a variety of electrospinning. Reproduced with permission from Ref. [60]. Copyright 2016, Royal Society of Chemistry. (b) Surface plot of behavior of axial velocity at 10 cm. (c) Surface plot of the behavior of axial velocity at 20 cm. (d) Representation of axial velocity over time for λBratu = 0.5. Reproduced with permission from Ref. [65]. Copyright 2024, Springer Nature.
Fig. 2. Outlines the systematic synthesis process of the Co-based precursor (a) and SEM images (b). Reproduced with permission from Ref. [73]. Copyright 2025, Royal Society of Chemistry. (c) Reaction pathway of US-MOFNFs. (d) SEM images of MOFs obtained under solvothermal conditions for 6 h. Reproduced with permission from Ref. [75]. Copyright 2025, Elsevier. (e) Schematic diagram depicting the fabrication process of the CoNP/SA-NC/Fe-NCNTs electrocatalyst. (f) The HRTEM patterns of CoNP/SA-NC/Fe-NCNTs catalyst. (g) HAADF-STEM diagrams of CoNP/SA-NC/Fe-NCNTs catalyst. Reproduced with permission from Ref. [77]. Copyright 2025 Wiley-VCH. (h) SEM images of Fe-ZIF-8/ZIF-8. SEM photographs of Fe-8/8-CN (i) and Fe-8-CN (j). Reproduced with permission from Ref. [81]. Copyright 2024, American Chemical Society.
Fig. 3. (a) Illustration depicting the fabrication procedure of MAPC (A). Reproduced with permission from Ref. [94]. Copyright 2024, Elsevier. (b) Schematic diagram depicting the synthesis of MOF@Ru and the detection and adsorption mechanism of AFB1 using a ratiometric fluorescence probe. Reproduced with permission from Ref. [95]. Copyright 2024, Elsevier. (c) Fabrication of BG-PLA NFMs through coaxial electrospinning technique. Reproduced with permission from Ref. [96]. Copyright 2025, Elsevier. (d) Scheme for the synthesis of CoxP@CF-900. Reproduced with permission from Ref. [97]. Copyright 2021, Wiley-VCH. (e) Illustration of the ORR mechanism catalyzed by Ru@FeZn-HNC/CNFs. Reproduced with permission from Ref. [98]. Copyright 2025, Elsevier. (f) Schematic diagram of PMMNFs@Zn/Co-ZIF synthesis. Reproduced with permission from Ref. [99]. Copyright 2023, Elsevier.
Fig. 4. (a) Preparation Process of Fe-ZCNF. (b) High-resolution SEM image. (c) galvanostatic charge-discharge voltage cycling curve at 10 mA cm-2. Reproduced with permission from Ref. [148]. Copyright 2025 Elsevier. (d) Schematic depiction of the fabrication route for ZxNy-CNFs. (e) Galvanostatic cycling stability of ZABs at 5 mA cm-2. Reproduced with permission from Ref. [149]. Copyright 2025, Elsevier. (f) Schematic illustration of the synthesis procedure of FeN4-NFS-CNF. (g) SEM images of FeN4-NFS-CN. (h,i) TEM images of FeN4-NFS-CNF. Reproduced with permission from Ref. [155]. Copyright 2023, Wiley-VCH. (j) Schematic diagram of the synthesis process for NiCo@C@CoMn CNFs. Reproduced with permission from Ref. [156]. Copyright 2025, Elsevier. (k) Galvanostatic charge-discharge cycling curves at 5 mA cm-2, and the insert is the photo of the solid battery with different bending angles. Reproduced with permission from Ref. [51]. Copyright 2022, Wiley-VCH.
Fig. 5. (a) Illustration of the fabrication process for Co-doped flexible carbon nanofiber membranes via the core-shell electrospinning method. Reproduced with permission from Ref. [160]. Copyright 2022, Elsevier. (b) TEM images of the Co-NFs. (c,d) TEM images of the Co-CSNFs. Reproduced with permission from Ref. [161]. Copyright 2023, Elsevier. (e) Stepwise synthesis diagram of CNFs/CoZn-MOF@COF composite. Reproduced with permission from Ref. [163]. Copyright 2024, Elsevier. (f) Schematic of ORR process in bead-like Co-N-C/CNF composite. Reproduced with permission from Ref. [166]. Copyright 2022, Springer Nature. (g,h,i) TEM images of Fe@NC-Ac-2S-800. Reproduced with permission from Ref. [167]. Copyright 2024, Elsevier. (j) Schematic diagram about the beaded Fe, Co-N-C/CNF catalyst for ORR and OER reactions. (k) Schematic illustration about covalent bond hybridization between active centers and ORR (OER) intermediates for Fe, Co-N-C/CNF. Reproduced with permission from Ref. [168]. Copyright 2024, American Chemical Society.
| Catalysts | Voltage (kV) | Electrospinning solution (precursor/polymer/solvent) | Working distance (cm)/temperature (°C)/humidity (%) | Annealing temperature (°C) | Morphology | Active sites | Surface area (BET N2 adsorption- desorption measurements) (m2 g-1) | E1/2 [V] (ORR) Pt/C | Ej=10 [V] (OER)/ RuO2 | Electrolyte ORR/OER 1600 rpm/0 rpm | Peak PC [mW cm-2] @Window voltage [V] | Cycling stability | Rate performance | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fe-ZCNF | 22 | ZIF-8/ PAN/DMF | 15/—/— | 900 (N2, 2 h) | porous | Fe-Nx | 1035.5 | 0.88/ 0.86 | 1.63/ 1.6 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 179.2@ 0.75 | >200 h/10 mA cm-2 | Stable discharge voltage plateau at 10-100 mA cm-2 | [148] |
| ZN3- CNFs- 900 | 15 | ZnCo-ZIF/ PVP, PAN/DMF | 12/18-22/45 | 900 (N2, 2 h) | porous | Co-Nx | 562.77 | 0.834/ 0.824 | 1.695/ 1.692 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 111@ 0.63 | 400 h/5 mA cm-2 | — | [149] |
| N-CNT@ MOF-Co/HO-BN/CNFs | 18 | Co(NO3)2/ HO-BN/PAN/DMF | 15/ | 1000 (N2, 2 h) | porous | Co-Nx | 352 | 0.84/ 0.84 | 1.51/ 1.49 (IrO2) | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 142.9@ 0.45 | >200 h/5 mA cm-2 | — | [150] |
| FeN4- NFS-CNF | 19 | ZnFe-ZIF/ PAN, PMMA/DMF | 15/—/— | 1000 (N2, 1 h) | hollow | Fe-N4 | 1693.98 | 0.90/ 0.84 | 1.50/ 1.57 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 201.5@ 0.6 | 1000 h /10 mA cm-2 | 0.25V gap @10mA cm-2, Holds 1.14V @50mA cm-2, Superior to Pt/C | [155] |
| NiCo@C@CoMnCNFs | 15 | Ni (Ac)2, Co (Ac)2/ PMMA, PVP, PAN/ DMF | 15/25-30 /30-40 | 800 (Ar, 2 h) | hollow | CoMn,NiCo | 325.9 | 0.82/ 0.83 | 1.628/ 1.738 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 130.3@ 0.59 | 1650 h/5 mA cm-2 | — | [156] |
| NiFe@ C@Co CNFs | 15 | Ni(Ac)2, Fe(AcAc)3/ PAN, PMMA/ DMAC | 15/25/25 | 800 (N2, 2 h) | hollow | Co-N, NiFe-N | 209 | 0.87/ 0.85 | 1.6/1.599 | 0.1 mol L-1 KOH/0.1 mol L-1 KOH | 130@ 0.52 | 67 h/5 mA cm-2 | — | [51] |
| Co-N- CCNFMs | 20 | Zn/Co-ZIFs/ PVP, PAN/DMF | — | 500 (Ar, 1 h), 900 (Ar, 1 h) | core- shell | Co-N4 | 750.87 | 0.84/ 0.85 | 1.559/ >1.599 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 61.5@ 0.6 | 37 h/2 mA cm-2 | Voltage retention = 100% from 1 to 15 mA cm-2 | [160] |
| Co- CSNFs | 18 | Co (NO3)2·6H2O/PAN/DMF | — | 1000 (N2, 1h) | core- shell | Co-Nx | — | 0.86/ 0.88 | — | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 57.48@ 0.58 | 366 h/- | — | [161] |
| CNFs/CoZn-MOF@COF | 17 | 2-MeIM /PAN/DMF | 19/—/— | 800(Ar, 2h) | core- shell | Co-Nx, Zn-Nx | 381.26 | 0.82/ 0.83 | 1.573/- | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 203.63@ 0.74 | 180 h/10 mA cm-2 | Outperforms Pt/C in rate performance over the range of 2-50 mA cm-2 | [163] |
| Co-N-C/CNF | 18 | ZIF-67 /PAN/DMF | — | 800(Ar, 1h) | beaded | CoNP-N1-C2 | 332.5 | 0.859/ 0.857 | — | 0.1 mol L-1 KOH/- | 159@ 0.68 | >100 h/10 mA cm-2 | Outperforms Pt/C in rate performance over 2-15 mA cm-2 | [166] |
| Fe, Co-N-C/CNF | 17 | Fe, Co-ZIF /PAN/ methanol | 18-25/—/— | 800(Ar, 1h) | beaded | Fe-Nx, Co-Nx | 299.9 | 0.878/0.857 | 1.624 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 152@ 0.68 | 120 h/10 mA cm-2 | — | [168] |
| CoSe2@NC@ NCNFs | 15 | ZIF-67 /PAN/DMF | 15/—/— | 1000 (Ar) | beaded | Co-Nx-C, CoSe2 | 125.6 | 0.80/ 0.86 | 1.51/ 1.53 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 126.8@ 0.6 | >240 cycles /10 mA cm-2 | Outperforms Pt/C in rate performance over 1-25 mA cm-2 | [169] |
Table 1 Comparison of physical parameters and electrochemical parameters of catalysts with different fiber morphologies.
| Catalysts | Voltage (kV) | Electrospinning solution (precursor/polymer/solvent) | Working distance (cm)/temperature (°C)/humidity (%) | Annealing temperature (°C) | Morphology | Active sites | Surface area (BET N2 adsorption- desorption measurements) (m2 g-1) | E1/2 [V] (ORR) Pt/C | Ej=10 [V] (OER)/ RuO2 | Electrolyte ORR/OER 1600 rpm/0 rpm | Peak PC [mW cm-2] @Window voltage [V] | Cycling stability | Rate performance | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fe-ZCNF | 22 | ZIF-8/ PAN/DMF | 15/—/— | 900 (N2, 2 h) | porous | Fe-Nx | 1035.5 | 0.88/ 0.86 | 1.63/ 1.6 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 179.2@ 0.75 | >200 h/10 mA cm-2 | Stable discharge voltage plateau at 10-100 mA cm-2 | [148] |
| ZN3- CNFs- 900 | 15 | ZnCo-ZIF/ PVP, PAN/DMF | 12/18-22/45 | 900 (N2, 2 h) | porous | Co-Nx | 562.77 | 0.834/ 0.824 | 1.695/ 1.692 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 111@ 0.63 | 400 h/5 mA cm-2 | — | [149] |
| N-CNT@ MOF-Co/HO-BN/CNFs | 18 | Co(NO3)2/ HO-BN/PAN/DMF | 15/ | 1000 (N2, 2 h) | porous | Co-Nx | 352 | 0.84/ 0.84 | 1.51/ 1.49 (IrO2) | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 142.9@ 0.45 | >200 h/5 mA cm-2 | — | [150] |
| FeN4- NFS-CNF | 19 | ZnFe-ZIF/ PAN, PMMA/DMF | 15/—/— | 1000 (N2, 1 h) | hollow | Fe-N4 | 1693.98 | 0.90/ 0.84 | 1.50/ 1.57 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 201.5@ 0.6 | 1000 h /10 mA cm-2 | 0.25V gap @10mA cm-2, Holds 1.14V @50mA cm-2, Superior to Pt/C | [155] |
| NiCo@C@CoMnCNFs | 15 | Ni (Ac)2, Co (Ac)2/ PMMA, PVP, PAN/ DMF | 15/25-30 /30-40 | 800 (Ar, 2 h) | hollow | CoMn,NiCo | 325.9 | 0.82/ 0.83 | 1.628/ 1.738 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 130.3@ 0.59 | 1650 h/5 mA cm-2 | — | [156] |
| NiFe@ C@Co CNFs | 15 | Ni(Ac)2, Fe(AcAc)3/ PAN, PMMA/ DMAC | 15/25/25 | 800 (N2, 2 h) | hollow | Co-N, NiFe-N | 209 | 0.87/ 0.85 | 1.6/1.599 | 0.1 mol L-1 KOH/0.1 mol L-1 KOH | 130@ 0.52 | 67 h/5 mA cm-2 | — | [51] |
| Co-N- CCNFMs | 20 | Zn/Co-ZIFs/ PVP, PAN/DMF | — | 500 (Ar, 1 h), 900 (Ar, 1 h) | core- shell | Co-N4 | 750.87 | 0.84/ 0.85 | 1.559/ >1.599 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 61.5@ 0.6 | 37 h/2 mA cm-2 | Voltage retention = 100% from 1 to 15 mA cm-2 | [160] |
| Co- CSNFs | 18 | Co (NO3)2·6H2O/PAN/DMF | — | 1000 (N2, 1h) | core- shell | Co-Nx | — | 0.86/ 0.88 | — | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 57.48@ 0.58 | 366 h/- | — | [161] |
| CNFs/CoZn-MOF@COF | 17 | 2-MeIM /PAN/DMF | 19/—/— | 800(Ar, 2h) | core- shell | Co-Nx, Zn-Nx | 381.26 | 0.82/ 0.83 | 1.573/- | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 203.63@ 0.74 | 180 h/10 mA cm-2 | Outperforms Pt/C in rate performance over the range of 2-50 mA cm-2 | [163] |
| Co-N-C/CNF | 18 | ZIF-67 /PAN/DMF | — | 800(Ar, 1h) | beaded | CoNP-N1-C2 | 332.5 | 0.859/ 0.857 | — | 0.1 mol L-1 KOH/- | 159@ 0.68 | >100 h/10 mA cm-2 | Outperforms Pt/C in rate performance over 2-15 mA cm-2 | [166] |
| Fe, Co-N-C/CNF | 17 | Fe, Co-ZIF /PAN/ methanol | 18-25/—/— | 800(Ar, 1h) | beaded | Fe-Nx, Co-Nx | 299.9 | 0.878/0.857 | 1.624 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 152@ 0.68 | 120 h/10 mA cm-2 | — | [168] |
| CoSe2@NC@ NCNFs | 15 | ZIF-67 /PAN/DMF | 15/—/— | 1000 (Ar) | beaded | Co-Nx-C, CoSe2 | 125.6 | 0.80/ 0.86 | 1.51/ 1.53 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 126.8@ 0.6 | >240 cycles /10 mA cm-2 | Outperforms Pt/C in rate performance over 1-25 mA cm-2 | [169] |
Fig. 6. (a) EPR spectra of the Fe-N4-C and Fe-N4/NGC-C. Magnetic susceptibility of Fe-N4-C (b) and Fe-N4/NGC-C (c). Reproduced with permission from Ref. [54]. Copyright 2025, Oxford University Press. (d) ORR polarization curves for the initial and 20000 cycles, respectively. (e) Normalized chronoamperometric curves of FeN4-FeNCP@MCF, FeN4@MCF, and Pt/C catalyst at 0.7 V versus RHE. Reproduced with permission from Ref. [177]. Copyright 2024, Wiley-VCH. (f) AC-HAADF-STEM of Fe SACs@PNCNFs. (g) LSV curves for OER in 0.1 mol L-1 KOH at 1600 rpm. (h) Tafel slopes. Reproduced with permission from Ref. [178]. Copyright 2025, Wiley-VCH. Co K-edge X-ray absorption near-edge structure spectra (i) and FT k2-weighted EXAFS spectra (j) for CoN5/PCNF, CoN4/PCNF and the reference samples of bulk Co, Co3O4, and CoPc. (k) In-situ Raman spectra of CoN5/PCNF recorded at various potentials in O2-saturated 0.1 mol L-1 KOH electrolyte. Reproduced with permission from Ref. [181]. Copyright 2024, Wiley-VCH.
Fig. 7. (a) Adsorption configurations at each key step on the Fe5@FeN4 and Co2Fe2@CoN4 sites in the Co2Fe2@CoN4─Fe5@FeN4 model. Reproduced with permission from Ref. [188]. Copyright 2024, Wiley-VCH. (b) TDOS curves. (c) ORR free energy diagrams of FeN4 site in NiN4-FeN4, and FeN4 site in NiN4-Fe5-FeN4 at 0 and 1.23 V vs. RHE. Reproduced with permission from Ref. [191]. Copyright 2025, Elsevier. (d) Free energy diagram of ORR steps on Fe-N4/Mn-N4 and Fe-N4. (e) Differential charge density of Fe-N4/Mn-N4 and Fe-N4. Reproduced with permission from Ref. [192]. Copyright 2024, Wiley-VCH. (f) Illustration of the formation for ES-Co/Zn-CNZIF with the proposed molecular structure. Reproduced with permission from Ref. [52]. Copyright 2023, Elsevier.
Fig. 8. (a) Geometric structures of single-atom, homo-/hetero-dual-atom, and homo-/hetero-trimetallic atom catalysts (TACs). (b) A smartwatch and a phone that are powered with an FSS-ZAB under the bent condition. Reproduced with permission from Ref. [196]. Copyright 2025, Wiley-VCH. (c) Atomic structures of electrocatalysts. Reproduced with permission from Ref. [197]. Copyright 2024, Elsevier. (d) Illustration of the synthetic process for S/N-CMF@FexCoyNi1-x-y-MOF. Reproduced with permission from Ref. [32]. Copyright 2023, Wiley-VCH. (e) Predictive performance of eight distinct ML regression models to minimize the overpotential. (f) Pearson correlation matrix. (g) Importance feature bar graph. Reproduced with permission from Ref. [200]. Copyright 2025, Wiley-VCH.
Fig. 9. (a) Electrospinning-based synthesis of Co, Ni-SAs/S, N-CNFs membrane catalyst. (b) High-resolution XPS spectra of S 2p orbitals of Co, Ni-SAs/S, N-CNFs. Reproduced with permission from Ref. [218]. Copyright 2024, Elsevier. (c) Synthesis route of ZIF-8 and ZIF-8 derived carbon. (d) Synthesis route of Zn-Im fibers and derived porous carbon fibers. (e) Synthesis route of high-content pyrrole-type Fe-N-C catalyst. Reproduced with permission from Ref. [219]. Copyright 2024, Royal Society of Chemistry. (f) XPS high-resolution energy spectrum of Co 2p. (g) OER polarization curves of different catalysts measured in 1 mol L-1 KOH solution at 1600 r min-1. (h) Overall polarization curves of different catalysts over the entire ORR and OER region. Reproduced with permission from Ref. [220]. Copyright 2023, Wiley-VCH.
| Catalysts | ORR and OER performance | ZAB performance | Ref. | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| E1/2 [V] (ORR)/ Pt/C | Ej=10 [V] (OER)/RuO2 | ΔE [V] | Electrolyte ORR/OER 1600 rpm/0 rpm | Electrolyte | OCV [V] | Peak PC [mW cm-2] @Window voltage [V] | Specific capacity (mAh g-1)/ Current density (mA cm-2) | Durability time (h)/ Current density (mA cm-2) | ||||||
| CoNC/ NCNTs@CNF | 0.78/0.78 | 1.62/1.55 | 0.84/ 0.77 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH | 1.423 | 260@0.7 | — | 43/5 | [49] | ||||
| Co/CNWs/CNFs | 0.82/0.85 | 1.64/— | 0.82/— | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.46 | 304@0.40 | 823/5 | 1500/5 | [50] | ||||
| NiFe@C@Co CNFs | 0.87/0.85 | 1.6/1.599 | 0.73/ 0.749 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.44 | 130@0.52 | 694/5 | 67/5 | [51] | ||||
| ES-Co/Zn-CNZIF | 0.857/ 0.834 | 1.692/1.603 | 0.835/ 0.769 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.527 | 215@0.65 | 802.6/10 | 254/10 | [52] | ||||
| CNT@Co- CNFF50-900 | 0.871/ 0.866 | 1.61/ 1.63(Ir/C) | 0.74/ 0.764 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH | 1.50 | 371@0.6 | 778/10 | >130/2 | [53] | ||||
| Fe-N4/NGC-C | 0.87/ <0.87 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.48 | 225@0.67 | 812/10 | >1200 cycles /10 | [54] | ||||
| CoNC-HCNFs | 0.83/0.83 | 1.57/1.55 | 0.74/ 0.72 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.41 | 255@- | — | 4/1 | [99] | ||||
| Fe-ZCNF | 0.88/0.86 | 1.63/1.6 | 0.75/ 0.74 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.59 | 179.2@ 0.75 | 788.5/10 | >200/10 | [148] | ||||
| ZN3-CNFs-900 | 0.834/ 0.824 | 1.695/1.692 | 0.861/ 0.868 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.43 | 111@0.63 | 791.6/5 | 400/5 | [149] | ||||
| N-CNT@MOF-Co/HO-BN/CNFs | 0.84/0.84 | 1.51/1.49 (IrO2) | 0.67/ 0.65 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.448 | 142.9@ 0.45 | 700/5 | >200/5 | [150] | ||||
| FeN4-NFS-CNF | 0.90/0.84 | 1.50/1.57 | 0.60/ 0.73 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.58 | 201.5@0.6 | 802/ | 1000/10 | [155] | ||||
| NiCo@C@ CoMnCNFs | 0.82/0.83 | 1.628/1.738 | 0.808/ 0.908 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.44 | 130.3@ 0.59 | 798.4/5 | 1650/5 | [156] | ||||
| Co-CSNFs | 0.86/0.88 | 1.70/1.69 | 0.84/ 0.81 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH | 1.37 | 57.48@ 0.58 | — | 366/— | [161] | ||||
| CNFs/CoZn-MOF@COF | 0.82/0.83 | 1.573/1.592 | 0.753/ 0.762 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.46 | 203.63@ 0.74 | 802.91/10 | 180/10 | [163] | ||||
| Co-N-C/CNF | 0.859/ 0.857 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.452 | 159@0.68 | 755/10 | >100/10 | [166] | ||||
| Fe, Co-N-C/CNF | 0.878/ 0.857 | 1.624/1.608 | 0.746/ 0.751 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.426 | 152@0.68 | 809.2/10 | 120/10 | [168] | ||||
| CoSe2@NC@ NCNFs | 0.80/0.86 | 1.51/1.53 | 0.71/ 0.67 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.43 | 126.8@0.6 | 763.1/10 | >240 cycles/ 10 | [169] | ||||
| FeN4-FeNCP@MCF | 0.894/ 0.865 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.489 | 208.1@ 0.65 | — | >350/5 | [177] | ||||
| Fe SACs@PNCNFs | 0.89/0.87 | 1.65/1.61 | 0.76/ 0.74 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.445 | 163@0.67 | 816/ 20 | >200/5 | [178] | ||||
| CoN5/PCNF | 0.92/ 0.856 | 1.53/1.58 | 0.61/ 0.724 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.52 | 273.8@ 0.63 | 784.2/10 | >600/10 | [181] | ||||
| Co, Fe-DACs/ NCs@PCF | 0.871/ 0.85 | 1.588/1.6 | 0.717/ 0.75 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.552 | 189.4@0.6 | 899.4/10 | 1500/2 | [188] | ||||
| CoSANi-NCNT/CNF | 0.86/0.85 | 1.47/1.478 (IrO2) | 0.618/ 0.628 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.54 | 132.23@ 0.53 | 803.5/10 | 120/10 | [182] | ||||
| NiN4-Fe5-FeN4@ PCF | 0.878/ 0.861 | 1.626/1.616 | 0.748/ 0.755 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.58 | — | 781.8/10 | >900/2 | [191] | ||||
| FeMn-N-C | 0.92/0.86 | 1.6/— | 0.68/— | 0.1 mol L-1 KOH/ 1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.494 | 151@0.63 | 795/— | 700/10 | [192] | ||||
| Co/Zn@NCF | 0.84/0.84 | 1.69/1.69 (IrO2) | 0.85/ 0.85 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 ZnCl2 | 1.42 | 202@0.6 | 760/10 | 666/5 | [140] | ||||
| Co,Ni-SAs/S, N-CNFs | 0.84/ <0.84 | 1.82/— | 0.98/— | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 ZnCl2 | 1.40 | 175@0.525 | 762/10 | 227/5 | [218] | ||||
| Im-Fe-NS-900 | 0.89/0.84 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.47 | 68.2@— | — | >90/5 | [219] | ||||
| CoP/CNF | 0.78/0.82 | 1.56/1.54 (IrO2) | 0.78/ 0.72 | 0.1 mol L-1 KOH/ 1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.43 | 164@0.65 | 780 /10 | 1200/5 | [220] | ||||
| NPS-HPCNF | 0.86/0.83 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.51 | 210@0.625 | 795/ | >1000/20 | [223] | ||||
Table 2 Summary of electrocatalytic and ZAB performance of electrospun-MOF composites as oxygen catalysts.
| Catalysts | ORR and OER performance | ZAB performance | Ref. | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| E1/2 [V] (ORR)/ Pt/C | Ej=10 [V] (OER)/RuO2 | ΔE [V] | Electrolyte ORR/OER 1600 rpm/0 rpm | Electrolyte | OCV [V] | Peak PC [mW cm-2] @Window voltage [V] | Specific capacity (mAh g-1)/ Current density (mA cm-2) | Durability time (h)/ Current density (mA cm-2) | ||||||
| CoNC/ NCNTs@CNF | 0.78/0.78 | 1.62/1.55 | 0.84/ 0.77 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH | 1.423 | 260@0.7 | — | 43/5 | [49] | ||||
| Co/CNWs/CNFs | 0.82/0.85 | 1.64/— | 0.82/— | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.46 | 304@0.40 | 823/5 | 1500/5 | [50] | ||||
| NiFe@C@Co CNFs | 0.87/0.85 | 1.6/1.599 | 0.73/ 0.749 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.44 | 130@0.52 | 694/5 | 67/5 | [51] | ||||
| ES-Co/Zn-CNZIF | 0.857/ 0.834 | 1.692/1.603 | 0.835/ 0.769 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.527 | 215@0.65 | 802.6/10 | 254/10 | [52] | ||||
| CNT@Co- CNFF50-900 | 0.871/ 0.866 | 1.61/ 1.63(Ir/C) | 0.74/ 0.764 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH | 1.50 | 371@0.6 | 778/10 | >130/2 | [53] | ||||
| Fe-N4/NGC-C | 0.87/ <0.87 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.48 | 225@0.67 | 812/10 | >1200 cycles /10 | [54] | ||||
| CoNC-HCNFs | 0.83/0.83 | 1.57/1.55 | 0.74/ 0.72 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.41 | 255@- | — | 4/1 | [99] | ||||
| Fe-ZCNF | 0.88/0.86 | 1.63/1.6 | 0.75/ 0.74 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.59 | 179.2@ 0.75 | 788.5/10 | >200/10 | [148] | ||||
| ZN3-CNFs-900 | 0.834/ 0.824 | 1.695/1.692 | 0.861/ 0.868 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.43 | 111@0.63 | 791.6/5 | 400/5 | [149] | ||||
| N-CNT@MOF-Co/HO-BN/CNFs | 0.84/0.84 | 1.51/1.49 (IrO2) | 0.67/ 0.65 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.448 | 142.9@ 0.45 | 700/5 | >200/5 | [150] | ||||
| FeN4-NFS-CNF | 0.90/0.84 | 1.50/1.57 | 0.60/ 0.73 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.58 | 201.5@0.6 | 802/ | 1000/10 | [155] | ||||
| NiCo@C@ CoMnCNFs | 0.82/0.83 | 1.628/1.738 | 0.808/ 0.908 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.44 | 130.3@ 0.59 | 798.4/5 | 1650/5 | [156] | ||||
| Co-CSNFs | 0.86/0.88 | 1.70/1.69 | 0.84/ 0.81 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH | 1.37 | 57.48@ 0.58 | — | 366/— | [161] | ||||
| CNFs/CoZn-MOF@COF | 0.82/0.83 | 1.573/1.592 | 0.753/ 0.762 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.46 | 203.63@ 0.74 | 802.91/10 | 180/10 | [163] | ||||
| Co-N-C/CNF | 0.859/ 0.857 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.452 | 159@0.68 | 755/10 | >100/10 | [166] | ||||
| Fe, Co-N-C/CNF | 0.878/ 0.857 | 1.624/1.608 | 0.746/ 0.751 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.426 | 152@0.68 | 809.2/10 | 120/10 | [168] | ||||
| CoSe2@NC@ NCNFs | 0.80/0.86 | 1.51/1.53 | 0.71/ 0.67 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.43 | 126.8@0.6 | 763.1/10 | >240 cycles/ 10 | [169] | ||||
| FeN4-FeNCP@MCF | 0.894/ 0.865 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.489 | 208.1@ 0.65 | — | >350/5 | [177] | ||||
| Fe SACs@PNCNFs | 0.89/0.87 | 1.65/1.61 | 0.76/ 0.74 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.445 | 163@0.67 | 816/ 20 | >200/5 | [178] | ||||
| CoN5/PCNF | 0.92/ 0.856 | 1.53/1.58 | 0.61/ 0.724 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.52 | 273.8@ 0.63 | 784.2/10 | >600/10 | [181] | ||||
| Co, Fe-DACs/ NCs@PCF | 0.871/ 0.85 | 1.588/1.6 | 0.717/ 0.75 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.552 | 189.4@0.6 | 899.4/10 | 1500/2 | [188] | ||||
| CoSANi-NCNT/CNF | 0.86/0.85 | 1.47/1.478 (IrO2) | 0.618/ 0.628 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.54 | 132.23@ 0.53 | 803.5/10 | 120/10 | [182] | ||||
| NiN4-Fe5-FeN4@ PCF | 0.878/ 0.861 | 1.626/1.616 | 0.748/ 0.755 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.58 | — | 781.8/10 | >900/2 | [191] | ||||
| FeMn-N-C | 0.92/0.86 | 1.6/— | 0.68/— | 0.1 mol L-1 KOH/ 1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.494 | 151@0.63 | 795/— | 700/10 | [192] | ||||
| Co/Zn@NCF | 0.84/0.84 | 1.69/1.69 (IrO2) | 0.85/ 0.85 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 ZnCl2 | 1.42 | 202@0.6 | 760/10 | 666/5 | [140] | ||||
| Co,Ni-SAs/S, N-CNFs | 0.84/ <0.84 | 1.82/— | 0.98/— | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 ZnCl2 | 1.40 | 175@0.525 | 762/10 | 227/5 | [218] | ||||
| Im-Fe-NS-900 | 0.89/0.84 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.47 | 68.2@— | — | >90/5 | [219] | ||||
| CoP/CNF | 0.78/0.82 | 1.56/1.54 (IrO2) | 0.78/ 0.72 | 0.1 mol L-1 KOH/ 1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.43 | 164@0.65 | 780 /10 | 1200/5 | [220] | ||||
| NPS-HPCNF | 0.86/0.83 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.51 | 210@0.625 | 795/ | >1000/20 | [223] | ||||
|
| [1] | Zhouzhou Wang, Qiancheng Zhou, Li Luo, Yaran Shi, Haoran Li, Chunchun Wang, Kesheng Lin, Chengsi Wang, Libing Zhu, Linyun Han, Zhuo Xing, Ying Yu. Suppressing catalyst reconstruction in neutral electrolyte: stabilizing Co-O-Mo point-to-point connection of cobalt molybdate by tungsten doping for oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 76(9): 146-158. |
| [2] | Xu Xinmeng, Xi Zuoshuai, Gao Hongyi, Zhao Danfeng, Liu Zhiyuan, Ban Tao, Wang Jingjing, Zhao Shunzheng, Wang Ge. Microenvironment modulation around frustrated Lewis pairs in Ce-based metal-organic frameworks for efficient catalytic hydrogenation [J]. Chinese Journal of Catalysis, 2025, 75(8): 59-72. |
| [3] | Yu Chengwen, Liang Lecheng, Mu Zhangyan, Yin Shaoqi, Liu Yuwen, Chen Shengli. FeNC shell-stabilized L10-PtFe intermetallic nanoparticles for high-performance oxygen reduction [J]. Chinese Journal of Catalysis, 2025, 75(8): 125-136. |
| [4] | Yao Yao, Juping Xu, Minhua Shao. Competitions between hydrogen evolution reaction and oxygen reduction reaction on an Au surface [J]. Chinese Journal of Catalysis, 2025, 73(6): 271-278. |
| [5] | Chenhao Li, Hao Wang, Weiwei Wang, Shuo Bai, Zhongbin Gong, Qinqin Sang, Yuqing Zhang, Feng Huo, Yanrong Liu. PtCu nano-dendrites with enhanced stability in proton exchange membrane fuel cells [J]. Chinese Journal of Catalysis, 2025, 73(6): 322-333. |
| [6] | Pengxiang Zhang, Jiawen Wang, Tianyu Yang, Ruizhe Wang, Ruofan Shen, Zhikun Peng, Yanyan Liu, Xianli Wu, Jianchun Jiang, Baojun Li. Unveiling complexities: Reviews on insights into the mechanism of oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 72(5): 48-83. |
| [7] | Siming Li, Enyang Sun, Pengfei Wei, Wei Zhao, Suizhu Pei, Ying Chen, Jie Yang, Huili Chen, Xi Yin, Min Wang, Yawei Li. Impregnation of ionic liquid into porous Fe-N-C electrocatalyst to improve electrode kinetics and mass transport for polymer electrolyte fuel cells [J]. Chinese Journal of Catalysis, 2025, 72(5): 277-288. |
| [8] | Zhixing Guan, Ying Zhang, Fangfang Feng, Zhaohui Li, Yanli Liu, Zifeng Wu, Xingxing Zheng, Xionghui Fu, Yuanming Zhang, Wenbin Liao, Jialu Chen, Hongguang Liu, Yi Zhu, Yongge Wei. Boost proton transfer in water oxidation by constructing local electric fields on BiVO4 photoanodes [J]. Chinese Journal of Catalysis, 2025, 72(5): 176-186. |
| [9] | Jiangyu Tang, Xiao Wang, Yunfa Wang, Min Shi, Peng Huo, Jianxiang Wu, Qiaoxia Li, Qunjie Xu. Active non-bonding oxygen mediate lattice oxygen oxidation on NiFe2O4 achieving efficient and stable water oxidation [J]. Chinese Journal of Catalysis, 2025, 72(5): 164-175. |
| [10] | Mingjia Lu, Jinhui Liang, Binwen Zeng, Wei Li, Yunqi Li, Qinqxin Wang, Yuhuai Li, Hong Chen, Jianzheng Li, Yangyang Chen, Lecheng Liang, Li Du, Yan Xiang, Shijun Liao, Zhiming Cui. Mesoporous bowl-like carbon support for boosting oxygen transport of fuel cell cathode [J]. Chinese Journal of Catalysis, 2025, 72(5): 254-265. |
| [11] | Rushuo Li, Tao Ban, Danfeng Zhao, Fajie Hu, Jing Lin, Xiubing Huang, Zhiping Tao, Ge Wang. Defective UiO-66(Ce) supported Ni nanoparticles with optimized microenvironment and electronic state for efficient olefin hydrogenation reaction [J]. Chinese Journal of Catalysis, 2025, 72(5): 344-358. |
| [12] | Liyuan Xiao, Xue Bai, Jingyi Han, Zhenlu Wang, Jingqi Guan. Tuning d-band electronic structure of Ni-Fe oxyhydroxides via doping engineering boosts seawater oxidation performance [J]. Chinese Journal of Catalysis, 2025, 71(4): 340-352. |
| [13] | Bo Zhang, Ru Xiao, Liyuan Liu, Xiaobin Liu, Ying Deng, Qingliang Lv, Zexing Wu, Yunmei Du, Yanyan Li, Zhenyu Xiao, Lei Wang. Electrochemistry assisted chlorine corrosion strategy: The minute-level fabrication of lattice Cl- functioned high spin-polarized Ni/Fe-LDH array for enhanced anti-Cl- OER performance [J]. Chinese Journal of Catalysis, 2025, 70(3): 388-398. |
| [14] | Yimeng Sun, Jun Chen, Lin Liu, Haibo Chi, Hongxian Han. The mechanism of OER activity and stability enhancement in acid by atomically doped iridium in γ-MnO2 [J]. Chinese Journal of Catalysis, 2025, 69(2): 99-110. |
| [15] | Mingxing Chen, Zihe Du, Nian Liu, Huijie Li, Jing Qi, Enbo Shangguan, Jing Li, Jiahao Cao, Shujiao Yang, Wei Zhang, Rui Cao. Cation and anion modulation activates lattice oxygen for enhanced oxygen evolution [J]. Chinese Journal of Catalysis, 2025, 69(2): 282-291. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||