Chinese Journal of Catalysis ›› 2025, Vol. 72: 176-186.DOI: 10.1016/S1872-2067(25)64665-1
• Articles • Previous Articles Next Articles
Zhixing Guana,1, Ying Zhanga,1, Fangfang Fenga, Zhaohui Lia, Yanli Liua, Zifeng Wua, Xingxing Zhenga, Xionghui Fua, Yuanming Zhanga, Wenbin Liaoa, Jialu Chena, Hongguang Liua,b,*(), Yi Zhua,c,*(
), Yongge Weid,*(
)
Received:
2024-12-17
Accepted:
2025-02-24
Online:
2025-05-18
Published:
2025-05-20
Contact:
*E-mail: hongguang_liu@jnu.edu.cn (H. Liu), tzhury@jnu.edu.cn (Y. Zhu), yonggewei@mail.tsinghua.edu.cn (Y. Wei).
About author:
1 Contributed equally to this work.
Supported by:
Zhixing Guan, Ying Zhang, Fangfang Feng, Zhaohui Li, Yanli Liu, Zifeng Wu, Xingxing Zheng, Xionghui Fu, Yuanming Zhang, Wenbin Liao, Jialu Chen, Hongguang Liu, Yi Zhu, Yongge Wei. Boost proton transfer in water oxidation by constructing local electric fields on BiVO4 photoanodes[J]. Chinese Journal of Catalysis, 2025, 72: 176-186.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64665-1
Fig. 1. (a) Formation of CXHXOX-BiVO4 photoanodes. (b,c) SEM images of pristine BiVO4 photoanodes and C2H4O2-BiVO4 photoanodes. (d) TEM images of C2H4O2-BiVO4 photoanodes. (e) HRTEM image of C2H4O2-BiVO4 photoanodes. XRD pattern (f) and FT-IR spectra (g) of BiVO4 and CXHXOX-BiVO4 photoanodes. (h-l) the corresponding EDS elemental mapping images of C2H4O2-BiVO4 photoanode for Bi, V, C, and O, respectively.
Fig. 2. (a) Photocurrent-potential (J-V) curves. (b) Transient photocurrents. (c) Applied bias photon-to-current efficiencies (ABPEs) under a Xenon lamp at 100 mW/cm2 in a 0.1 mol/L phosphate buffer (pH 7.0). (d) Incident photon-to-current efficiencies (IPCEs) under a two-electrode system in a 0.1 mol/L phosphate buffer solution and the applied bias voltage is 1.23 VRHE. (e) Electrochemical impedance spectra (EIS) measured at 1.23 VRHE. (f) UV/Vis diffuse spectra. Inset: Tauc plots of BiVO4 and CxHxOx-BiVO4. (g) the efficiency of light absorption (ηabs). (h) Charge separation efficiency (ηsep). (i) Surface carrier transfer (ηox) of pristine BiVO4 and CxHxOx-BiVO4 photoanodes.
Fig. 3. (a,c,e) J-V curves of BiVO4 and CxHxOx-BiVO4 photoanodes in 0.1 mol/L phosphate H2O and D2O solutions, respectively. (b,d,f) The KIE values of BiVO4 and CxHxOx-BiVO4 calculated from the photocurrent density ratio in H2O and D2O solutions (KIE = JH2O/JD2O). Raman spectra of C2H4O2-BiVO4 after and before PEC (g), C2H2O4-BiVO4 after and before PEC (h), and C6H8O6-BiVO4 after and before PEC (i).
Fig. 4. (a) Mott-Schottky plots of BiVO4 and CXHXOX-BiVO4 photoanodes measured in a 0.1 mol/L phosphate buffer (pH = 7.0) in the dark. Bi 4f (b), V 2p (c), and O 1s (d) XPS spectra for bare BiVO4 and CXHXOX-BiVO4 photoanodes, respectively.
Fig. 5. Charge density difference analyses on BiVO4 (a), C2H4O2-BiVO4 (b), C2H2O4-BiVO4 (c), C6H8O6-BiVO4 (d), gray and blue colors represent charge depletion and accumulation, respectively. The isosurface value is set as 0.02 e/bohr3. (e) DFT-optimized structures and adsorption energies of H2O at the surfaces of BiVO4 and C6H8O6-BiVO4. (f) Gibbs free energy profiles of OER for BiVO4, C2H4O2-BiVO4, C2H2O4-BiVO4 and C6H8O6-BiVO4.
Scheme 1. Electron-proton transfer pathways during interfacial hole transfer for oxidation of BiVO4 (a), C2H4O2-BiVO4 (b), C2H2O4-BiVO4 (c), and C6H8O6-BiVO4 (d).
|
[1] | Jiangyu Tang, Xiao Wang, Yunfa Wang, Min Shi, Peng Huo, Jianxiang Wu, Qiaoxia Li, Qunjie Xu. Active non-bonding oxygen mediate lattice oxygen oxidation on NiFe2O4 achieving efficient and stable water oxidation [J]. Chinese Journal of Catalysis, 2025, 72(5): 164-175. |
[2] | Pengxiang Zhang, Jiawen Wang, Tianyu Yang, Ruizhe Wang, Ruofan Shen, Zhikun Peng, Yanyan Liu, Xianli Wu, Jianchun Jiang, Baojun Li. Unveiling complexities: Reviews on insights into the mechanism of oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 72(5): 48-83. |
[3] | Liyuan Xiao, Xue Bai, Jingyi Han, Zhenlu Wang, Jingqi Guan. Tuning d-band electronic structure of Ni-Fe oxyhydroxides via doping engineering boosts seawater oxidation performance [J]. Chinese Journal of Catalysis, 2025, 71(4): 340-352. |
[4] | Bo Zhang, Ru Xiao, Liyuan Liu, Xiaobin Liu, Ying Deng, Qingliang Lv, Zexing Wu, Yunmei Du, Yanyan Li, Zhenyu Xiao, Lei Wang. Electrochemistry assisted chlorine corrosion strategy: The minute-level fabrication of lattice Cl- functioned high spin-polarized Ni/Fe-LDH array for enhanced anti-Cl- OER performance [J]. Chinese Journal of Catalysis, 2025, 70(3): 388-398. |
[5] | Yimeng Sun, Jun Chen, Lin Liu, Haibo Chi, Hongxian Han. The mechanism of OER activity and stability enhancement in acid by atomically doped iridium in γ-MnO2 [J]. Chinese Journal of Catalysis, 2025, 69(2): 99-110. |
[6] | Mingxing Chen, Zihe Du, Nian Liu, Huijie Li, Jing Qi, Enbo Shangguan, Jing Li, Jiahao Cao, Shujiao Yang, Wei Zhang, Rui Cao. Cation and anion modulation activates lattice oxygen for enhanced oxygen evolution [J]. Chinese Journal of Catalysis, 2025, 69(2): 282-291. |
[7] | Minfei Xie, Xing Ji, Huaying Meng, Nanbing Jiang, Zhenyu Luo, Qianqian Huang, Geng Sun, Yunhuai Zhang, Peng Xiao. The role of titanium at the interface of hematite photoanode in multisite mechanism: Reactive site or cocatalyst site? [J]. Chinese Journal of Catalysis, 2024, 64(9): 77-86. |
[8] | Hong-Rui Zhu, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Qi-Ni Zhan, Ting-Yu Shuai, Gao-Ren Li. Recent advances of the catalysts for photoelectrocatalytic oxygen evolution and CO2 reduction reactions [J]. Chinese Journal of Catalysis, 2024, 62(7): 53-107. |
[9] | Qingyun Lv, Weiwei Zhang, Zhipeng Long, Jiantao Wang, Xingli Zou, Wei Ren, Long Hou, Xionggang Lu, Yufeng Zhao, Xing Yu, Xi Li. Large-current polarization-engineered FeOOH@NiOOH electrocatalyst with stable Fe sites for large-current oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2024, 62(7): 254-264. |
[10] | Jingya Guo, Wei Liu, Wenzhe Shang, Duanhui Si, Chao Zhu, Jinwen Hu, Cuncun Xin, Xusheng Cheng, Songlin Zhang, Suchan Song, Xiuyun Wang, Yantao Shi. Engineering fully exposed edge-plane sites on carbon-based electrodes for efficient water oxidation [J]. Chinese Journal of Catalysis, 2024, 60(5): 272-283. |
[11] | Adel Al-Salihy, Ce Liang, Abdulwahab Salah, Abdel-Basit Al-Odayni, Ziang Lu, Mengxin Chen, Qianqian Liu, Ping Xu. Ultralow Ru-doped NiMoO4@Ni3(PO4)2 core-shell nanostructures for improved overall water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 360-375. |
[12] | Jian Yiing Loh, Joel Jie Foo, Feng Ming Yap, Hanfeng Liang, Wee-Jun Ong. Unleashing the versatility of porous nanoarchitectures: A voyage for sustainable electrocatalytic water splitting [J]. Chinese Journal of Catalysis, 2024, 58(3): 37-85. |
[13] | Yingjie Guo, Shilong Li, Wasihun Abebe, Jingyang Wang, Lei Shi, Di Liu, Shenlong Zhao. Non-derivatized metal-organic framework nanosheets for water electrolysis: Fundamentals, regulation strategies and recent advances [J]. Chinese Journal of Catalysis, 2024, 67(12): 21-53. |
[14] | Tian Tian, Wanting Wang, Yiping Wang, Kexin Li, Yuanyuan Li, Wensheng Fu, Yong Ding. Mo-doping and CoOx loading over BiVO4 photoanode for enhancing performance of H2O2 synthesis and in-situ organic pollutant degradation [J]. Chinese Journal of Catalysis, 2024, 67(12): 176-185. |
[15] | Long Song, Jingqi Chi, Junheng Tang, Xiaobin Liu, Zhenyu Xiao, Zexing Wu, Lei Wang. Anode design principles for efficient seawater electrolysis and inhibition of chloride oxidation [J]. Chinese Journal of Catalysis, 2024, 66(11): 53-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||