Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (12): 2197-2205.DOI: 10.1016/S1872-2067(20)63770-6
• Articles • Previous Articles Next Articles
Mengheng Wang†, Yaoyao Han†, Suhan Liu, Zhiming Liu, Dongli An, Zhiqiang Zhang, Kang Cheng*(), Qinghong Zhang, Ye Wang#(
)
Received:
2020-12-29
Accepted:
2020-12-29
Online:
2021-12-18
Published:
2021-01-31
Contact:
Kang Cheng,Ye Wang
About author:
# E-mail: wangye@xmu.edu.cn†These authors contributed equally to this work.
Supported by:
Mengheng Wang, Yaoyao Han, Suhan Liu, Zhiming Liu, Dongli An, Zhiqiang Zhang, Kang Cheng, Qinghong Zhang, Ye Wang. Pore-mouth catalysis boosting the formation of iso-paraffins from syngas over bifunctional catalysts[J]. Chinese Journal of Catalysis, 2021, 42(12): 2197-2205.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63770-6
Zeolites | Pore size (nm2) | Topology | Si/(Si + Al + P)a | PeakHTb (°C) | Dacidc (mmol g-1) | Morphologyd |
---|---|---|---|---|---|---|
SAPO-41 | 0.41 × 0.53 | AFO | 0.04 | 308 | 0.12 | Eight prism, 5 µm |
SAPO-11 | 0.40 × 0.65 | AEL | 0.06 | 303 | 0.23 | Cuboid, 1-2 µm |
SAPO-5 | 0.73 × 0.73 | AFI | 0.03 | 265 | 0.15 | Hexagonal prism, 2 µm |
AlPO-11 | 0.40 × 0.65 | AEL | 0 | — | 0 | Needle, 1 µm |
Table 1 Physiochemical properties of three SAPO zeolites and AlPO-11 zeolite.
Zeolites | Pore size (nm2) | Topology | Si/(Si + Al + P)a | PeakHTb (°C) | Dacidc (mmol g-1) | Morphologyd |
---|---|---|---|---|---|---|
SAPO-41 | 0.41 × 0.53 | AFO | 0.04 | 308 | 0.12 | Eight prism, 5 µm |
SAPO-11 | 0.40 × 0.65 | AEL | 0.06 | 303 | 0.23 | Cuboid, 1-2 µm |
SAPO-5 | 0.73 × 0.73 | AFI | 0.03 | 265 | 0.15 | Hexagonal prism, 2 µm |
AlPO-11 | 0.40 × 0.65 | AEL | 0 | — | 0 | Needle, 1 µm |
Fig. 2. Effects of Brönsted acid sites (a), temperature (b) and pressure (c) on the catalytic behaviors of ZnAlOx/SAPO catalyst in CO hydrogenation. Reaction conditions: Wcat = 1.0 g, H2/CO = 1, P = 2-4 MPa, Fsyngas = 25 mL min-1, T = 350-400 °C, time on stream = 10 h. Catalytic performances in detail are listed in Table S5-S7.
Fig. 3. Effect of pore size of 1D SAPO zeolites on the catalytic behaviors of bifunctional ZnAlOx/SAPO catalysts in CO hydrogenation. Reaction conditions: Wcat = 1.0 g, H2/CO = 1, P = 3 MPa, Fsyngas = 25 mL min-1, T = 350 °C, time on stream = 4 h or 10 h. Catalytic performances in detail are listed in Table S9.
Fig. 4. Comparison of catalytic performance between bifunctional ZnAlOx/SAPO-11 and Co/H-meso-ZSM-5 catalyst in syngas conversion reaction after 10 h of reaction. Reaction conditions for ZnAlOx/SAPO-11: Wcat = 1.0 g, H2/CO = 1, P = 3 MPa, Fsyngas = 25 mL min-1, T = 350 °C, time on stream = 10 h. Reaction conditions for Co/H-meso-ZSM-5: Wcat = 0.5 g, H2/CO = 1, P = 2 MPa, Fsyngas = 20 mL min-1, T = 240 °C, time on stream = 10 h. Catalytic performances in detail are listed in Table S10.
Fig. 5. Comparison of (a) ZnAlOx/SAPO-11 and (b) Co/H-meso-ZSM-5 in syngas conversion. Reaction conditions for ZnAlOx/SAPO-11: Wcat = 1.0 g, H2/CO = 1, P = 3 MPa, Fsyngas = 25 mL min-1, T = 350 °C. Reaction conditions for Co/H-meso-ZSM-5: Wcat = 0.5 g, H2/CO = 1, P = 2 MPa, Fsyngas = 20 mL min-1, T = 240 °C.
Fig. 6. (a) GC-MS analysis of the gaseous product in C4-C6 cut over bifunctional ZnAlOx/SAPO-11 catalyst after 10 h of reaction; (b) Adsorption isotherms of n-butane and iso-butane over SAPO-11; (c) Schematic pore-mouth catalysis mechanism in syngas conversion over ZnAlOx/SAPO-11 catalyst.
|
[1] | Peigong Liu, Tiejun Lin, Lei Guo, Xiaozhe Liu, Kun Gong, Taizhen Yao, Yunlei An, Liangshu Zhong. Tuning cobalt carbide wettability environment for Fischer-Tropsch to olefins with high carbon efficiency [J]. Chinese Journal of Catalysis, 2023, 48(5): 150-163. |
[2] | Yu Shang, Yunxuan Ding, Peili Zhang, Mei Wang, Yufei Jia, Yunlong Xu, Yaqing Li, Ke Fan, Licheng Sun. Pyrrolic N or pyridinic N: The active center of N-doped carbon for CO2 reduction [J]. Chinese Journal of Catalysis, 2022, 43(9): 2405-2413. |
[3] | Tong Cui, Xuejun Zhai, Lili Guo, Jing-Qi Chi, Yu Zhang, Jiawei Zhu, Xuemei Sun, Lei Wang. Controllable synthesis of a self-assembled ultralow Ru, Ni-doped Fe2O3 lily as a bifunctional electrocatalyst for large-current-density alkaline seawater electrolysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2202-2211. |
[4] | Hongbin Chen, Yaqian Ye, Xinzhi Chen, Lili Zhang, Guoxue Liu, Suqing Wang, Liang-Xin Ding. N-doped porous carbon nanofibers inlaid with hollow Co3O4 nanoparticles as an efficient bifunctional catalyst for rechargeable Li-O2 batteries [J]. Chinese Journal of Catalysis, 2022, 43(6): 1511-1519. |
[5] | Chenxin Chen, Suqi He, Kamran Dastafkan, Zehua Zou, Qingxiang Wang, Chuan Zhao. Sea urchin-like NiMoO4 nanorod arrays as highly efficient bifunctional catalysts for electrocatalytic/photovoltage-driven urea electrolysis [J]. Chinese Journal of Catalysis, 2022, 43(5): 1267-1276. |
[6] | Xiaoqin Han, Jiachang Zuo, Danlu Wen, Youzhu Yuan. Toluene methylation with syngas to para-xylene by bifunctional ZnZrOx-HZSM-5 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 1156-1164. |
[7] | Zhaopeng Liu, Youming Ni, Zhongpan Hu, Yi Fu, Xudong Fang, Qike Jiang, Zhiyang Chen, Wenliang Zhu, Zhongmin Liu. Insights into effects of ZrO2 crystal phase on syngas-to-olefin conversion over ZnO/ZrO2 and SAPO-34 composite catalysts [J]. Chinese Journal of Catalysis, 2022, 43(3): 877-884. |
[8] | Huibing Liu, Rixin Xie, Ziqiang Niu, Qiaohuan Jia, Liu Yang, Shitao Wang, Dapeng Cao. Two-in-one strategy to construct bifunctional oxygen electrocatalysts for rechargeable Zn-air battery [J]. Chinese Journal of Catalysis, 2022, 43(11): 2906-2912. |
[9] | Fangjun Shao, Zihao Yao, Yijing Gao, Qiang Zhou, Zhikang Bao, Guilin Zhuang, Xing Zhong, Chuan Wu, Zhongzhe Wei, Jianguo Wang. Geometric and electronic effects on the performance of a bifunctional Ru2P catalyst in the hydrogenation and acceptorless dehydrogenation of N-heteroarenes [J]. Chinese Journal of Catalysis, 2021, 42(7): 1185-1194. |
[10] | Shihui Zou, Zhinian Li, Qiuyue Zhou, Yang Pan, Wentao Yuan, Lei He, Shenliang Wang, Wu Wen, Juanjuan Liu, Yong Wang, Yonghua Du, Jiuzhong Yang, Liping Xiao, Hisayoshi Kobayashi, Jie Fan. Surface coupling of methyl radicals for efficient low-temperature oxidative coupling of methane [J]. Chinese Journal of Catalysis, 2021, 42(7): 1117-1125. |
[11] | Zhiyang Chen, Youming Ni, Fuli Wen, Ziqiao Zhou, Wenliang Zhu, Zhongmin Liu. The carboxylates formed on oxides promoting the aromatization in syngas conversion over composite catalysts [J]. Chinese Journal of Catalysis, 2021, 42(5): 835-843. |
[12] | Mengyang Li, Cuibo Liu, Yi Huang, Shuyan Han, Bing Zhang. Water-involving transfer hydrogenation and dehydrogenation of N-heterocycles over a bifunctional MoNi4 electrode [J]. Chinese Journal of Catalysis, 2021, 42(11): 1983-1991. |
[13] | Siyu Lu, Haiyan Yang, Zixuan Zhou, Liangshu Zhong, Shenggang Li, Peng Gao, Yuhan Sun. Effect of In2O3 particle size on CO2 hydrogenation to lower olefins over bifunctional catalysts [J]. Chinese Journal of Catalysis, 2021, 42(11): 2038-2048. |
[14] | Yajun He, Xin Chen, Chi Huang, Liuyi Li, Chengkai Yang, Yan Yu. Encapsulation of Co single sites in covalent triazine frameworks for photocatalytic production of syngas [J]. Chinese Journal of Catalysis, 2021, 42(1): 123-130. |
[15] | Xiaoli Yang, Xiong Su, De Chen, Tao Zhang, Yanqiang Huang. Direct conversion of syngas to aromatics: A review of recent studies [J]. Chinese Journal of Catalysis, 2020, 41(4): 561-573. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||