Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (11): 2038-2048.DOI: 10.1016/S1872-2067(21)63851-2
• Articles • Previous Articles Next Articles
Siyu Lua,b, Haiyan Yanga, Zixuan Zhoua,b, Liangshu Zhonga,b,c, Shenggang Lia,b,c,*(), Peng Gaoa,b,#(
), Yuhan Suna,c,d,$(
)
Received:
2021-04-14
Revised:
2021-04-14
Accepted:
2021-05-20
Online:
2021-11-18
Published:
2021-06-08
Contact:
Shenggang Li,Peng Gao,Yuhan Sun
About author:
$E-mail:Tel: +86-551-65591263; Fax: +86-551-65591434; E-mail: sunyh@sari.ac.cnSupported by:
Siyu Lu, Haiyan Yang, Zixuan Zhou, Liangshu Zhong, Shenggang Li, Peng Gao, Yuhan Sun. Effect of In2O3 particle size on CO2 hydrogenation to lower olefins over bifunctional catalysts[J]. Chinese Journal of Catalysis, 2021, 42(11): 2038-2048.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63851-2
Sample | Calcination temperature (°C) | Crystal size (nm) | Surface area f (m2 g-1) | |||||
---|---|---|---|---|---|---|---|---|
Fresh | Used a | |||||||
In2O3-300 | 300 | 7 a | 5 b | 15 c | 17 d | 16 e | 127 | |
In2O3-400 | 400 | 10 a | 9 b | 17 c | 18 d | 18 e | 93 | |
In2O3-500 | 500 | 15 a | 15 b | 19 c | 21 d | 20 e | 47 | |
In2O3-600 | 600 | 19 a | 18 b | 22 c | 22 d | 21 e | 28 | |
In2O3-650 | 650 | 23 a | 23 b | 24 c | 25 d | 25 e | 17 | |
In2O3-700 | 700 | 28 a | 27 b | 29 c | 29 d | 29 e | 16 |
Table 1 Texture properties of the In2O3-x samples prepared at different calcination temperatures.
Sample | Calcination temperature (°C) | Crystal size (nm) | Surface area f (m2 g-1) | |||||
---|---|---|---|---|---|---|---|---|
Fresh | Used a | |||||||
In2O3-300 | 300 | 7 a | 5 b | 15 c | 17 d | 16 e | 127 | |
In2O3-400 | 400 | 10 a | 9 b | 17 c | 18 d | 18 e | 93 | |
In2O3-500 | 500 | 15 a | 15 b | 19 c | 21 d | 20 e | 47 | |
In2O3-600 | 600 | 19 a | 18 b | 22 c | 22 d | 21 e | 28 | |
In2O3-650 | 650 | 23 a | 23 b | 24 c | 25 d | 25 e | 17 | |
In2O3-700 | 700 | 28 a | 27 b | 29 c | 29 d | 29 e | 16 |
Fig. 1. TEM images and size distributions (insert) of the various In2O3-x samples. (a) In2O3-300; (b) In2O3-400; (c) In2O3-500; (d) In2O3-600; (e) In2O3-650; (f) In2O3-700.
Fig. 2. (a) N2 adsorption-desorption curves and BJH pore size distributions (insert) of the pure In2O3 samples. (b) Correlation between the particle size of In2O3 and the calcination temperature. The blue and red lines represent sizes of the fresh In2O3 obtained from TEM and XRD, respectively. The olive and magenta lines represent those of the In2O3-x samples after 24 and 50 h of reaction, respectively. (c) The BET specific surface areas of fresh In2O3-x (red) and spent In2O3-x after reaction for 24 h (olive).
Fig. 3. XPS O 1s spectra of pretreated In2O3-x samples in Ar and the corresponding fractions of surface oxygen atoms next to a defect calculated from the deconvoluted O 1s peaks.
Sample | Particle size (nm) a | CO2 conv. (%) | CO sel. (%) | Hydrocarbon distribution (C%) | C2-C4 O/P | |||
---|---|---|---|---|---|---|---|---|
CH4 | | | C5+ | |||||
In2O3-300 | 15 | 13.3 | 63.2 | 1.5 | 22.2 | 71.3 | 5.0 | 3.2 |
In2O3-400 | 17 | 13.8 | 65.9 | 1.8 | 19.1 | 74.4 | 4.7 | 3.9 |
In2O3-500 | 19 | 14.1 | 60.9 | 1.8 | 16.1 | 76.9 | 5.2 | 4.8 |
In2O3-600 | 22 | 12.0 | 62.4 | 2.1 | 20.9 | 71.8 | 5.2 | 3.4 |
In2O3-650 | 24 | 11.9 | 61.8 | 1.4 | 21.5 | 71.2 | 5.9 | 3.3 |
In2O3-700 | 29 | 11.6 | 57.2 | 1.6 | 27.4 | 65.1 | 5.9 | 2.4 |
Table 2 Catalytic performance for CO2 hydrogenation over bifunctional catalysts containing In2O3 oxides with different crystal sizes and SAPO-34 zeolites.
Sample | Particle size (nm) a | CO2 conv. (%) | CO sel. (%) | Hydrocarbon distribution (C%) | C2-C4 O/P | |||
---|---|---|---|---|---|---|---|---|
CH4 | | | C5+ | |||||
In2O3-300 | 15 | 13.3 | 63.2 | 1.5 | 22.2 | 71.3 | 5.0 | 3.2 |
In2O3-400 | 17 | 13.8 | 65.9 | 1.8 | 19.1 | 74.4 | 4.7 | 3.9 |
In2O3-500 | 19 | 14.1 | 60.9 | 1.8 | 16.1 | 76.9 | 5.2 | 4.8 |
In2O3-600 | 22 | 12.0 | 62.4 | 2.1 | 20.9 | 71.8 | 5.2 | 3.4 |
In2O3-650 | 24 | 11.9 | 61.8 | 1.4 | 21.5 | 71.2 | 5.9 | 3.3 |
In2O3-700 | 29 | 11.6 | 57.2 | 1.6 | 27.4 | 65.1 | 5.9 | 2.4 |
Fig. 6. Correlation between hydrocarbon selectivity under the standard reaction conditions and the particle size of In2O3 corresponding to the data given in Table 2. (a) Selectivities of C2=-C4= and C2o-C4o among all hydrocarbons; (b) Ratio of lower olefins to lower paraffins; (c) Selectivities of C2=, C3=, and C4=; (d) STY of lower olefins and paraffins.
Fig. 8. Catalytic stability of the In2O3-x/SAPO-34 catalyst under the reaction conditions shown in Table 2. (a) In2O3-300/SAPO-34; (b) In2O3-500/SAPO-34; (c) In2O3-700/SAPO-34.
Fig. 7. CO2 conversion (a) and CO selectivity (b) over In2O3-x/SAPO-34 bifunctional catalysts as a function of In2O3 particle size; (c) CO2 conversion and CH3OH selectivity over pure In2O3-x catalysts as a function of In2O3 particle size; (d) Arrhenius plots for CO2 hydrogenation to methanol over In2O3-x. Reaction conditions: In2O3 (0.4 g) + SAPO-34 (0.8 g), F = 180 mL min-1, 3.0 MPa, 350 °C, H2/CO2 = 3.
Fig. 9. Size dependence of the TOF of hydrocarbons: (a) TOFCH4; (b) TOFlower olefins and TOFlower paraffins. Reaction conditions: In2O3 (0.3 g) + SAPO-34 (0.6 g), 3.0 MPa, 350 °C, H2/CO2 = 3, WHSV = 12000 or 15000 mL gcat-1 h-1.
|
[1] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[2] | Longtai Li, Bin Yang, Biao Gao, Yifu Wang, Lingxia Zhang, Tatsumi Ishihara, Wei Qi, Limin Guo. CO2 hydrogenation selectivity shift over In-Co binary oxides catalysts: Catalytic mechanism and structure-property relationship [J]. Chinese Journal of Catalysis, 2022, 43(3): 862-876. |
[3] | Shihui Zou, Zhinian Li, Qiuyue Zhou, Yang Pan, Wentao Yuan, Lei He, Shenliang Wang, Wu Wen, Juanjuan Liu, Yong Wang, Yonghua Du, Jiuzhong Yang, Liping Xiao, Hisayoshi Kobayashi, Jie Fan. Surface coupling of methyl radicals for efficient low-temperature oxidative coupling of methane [J]. Chinese Journal of Catalysis, 2021, 42(7): 1117-1125. |
[4] | Lei Ma, Li Yan, An-Hui Lu, Yunjie Ding. Effects of Ni particle size on amination of monoethanolamine over Ni-Re/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2019, 40(4): 567-579. |
[5] | Zhibiao Shi, Haiyan Yang, Peng Gao, Xinqing Chen, Hongjiang Liu, Liangshu Zhong, Hui Wang, Wei Wei, Yuhan Sun. Effect of alkali metals on the performance of CoCu/TiO2 catalysts for CO2 hydrogenation to long-chain hydrocarbons [J]. Chinese Journal of Catalysis, 2018, 39(8): 1294-1302. |
[6] | Xiaosu Dong, Feng Li, Ning Zhao, Yisheng Tan, Junwei Wang, Fukui Xiao. CO2 hydrogenation to methanol over Cu/Zn/Al/Zr catalysts prepared by liquid reduction [J]. Chinese Journal of Catalysis, 2017, 38(4): 717-725. |
[7] | Liang Li, Jianghong Ding, Jin-Gang Jiang, Zhiguo Zhu, Peng Wu. One-pot synthesis of 5-hydroxymethylfurfural from glucose using bifunctional [Sn,Al]-Beta catalysts [J]. Chinese Journal of Catalysis, 2015, 36(6): 820-828. |
[8] | Ting Xu, Hang Song, Weiping Deng, Qinghong Zhang, Ye Wang. Catalytic conversion of methyl chloride to lower olefins over modified H-ZSM-34 [J]. Chinese Journal of Catalysis, 2013, 34(11): 2047-2056. |
[9] | Sen Lin, Xinxin Ye. First-principle insights into the catalytic role of indium oxide in methanol steam reforming [J]. Chinese Journal of Catalysis, 2013, 34(10): 1855-1860. |
[10] | XIAO Kang, BAO Zheng-Hong, QI Xing-Zhen, WANG Xin-Xing, ZHONG Liang-Shu, FANG Ke-Gong, LIN Ming-Gui, SUN Yu-Han. Advances in bifunctional catalysis for higher alcohol synthesis from syngas [J]. Chinese Journal of Catalysis, 2013, 34(1): 116-129. |
[11] | Giuseppe BELLUSSI, Andreas HAAS, Sandra RABL, Dominic SANTI, Marco FERRARI, Vincenzo CALEMMA, Jens WEITKAMP. Catalytic Ring Opening of Perhydroindan - Hydrogenolytic and Cationic Reaction Paths [J]. Chinese Journal of Catalysis, 2012, 33(1): 70-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||