Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (3): 862-876.DOI: 10.1016/S1872-2067(21)63870-6
• Articles • Previous Articles Next Articles
Longtai Lia,†, Bin Yangb,c,†, Biao Gaoa, Yifu Wanga, Lingxia Zhangb,c, Tatsumi Ishiharad, Wei Qie,f,*(), Limin Guoa,#(
)
Received:
2021-06-10
Revised:
2021-06-10
Online:
2022-03-18
Published:
2021-07-02
Contact:
Wei Qi, Limin Guo
About author:
First author contact:† Contributed equally to this work.
Supported by:
Longtai Li, Bin Yang, Biao Gao, Yifu Wang, Lingxia Zhang, Tatsumi Ishihara, Wei Qi, Limin Guo. CO2 hydrogenation selectivity shift over In-Co binary oxides catalysts: Catalytic mechanism and structure-property relationship[J]. Chinese Journal of Catalysis, 2022, 43(3): 862-876.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63870-6
Catalyst | Indium element molar proportion (%) a | BET surface area (m2 g-1) | Crystallite size (nm) b | |
---|---|---|---|---|
Co3O4 | In2O3 | |||
Co3O4 | 0 | 42.89 | 16.6 | — |
In1-Co19 | 4.8 | 52.15 | 12.3 | — |
In1-Co9 | 8.9 | 58.75 | 11.2 | — |
In1-Co4 | 19.5 | 71.88 | 5.7 | — |
In1-Co1 | 51.1 | 29.39 | 13.6 | 15.1 |
In2O3 | 100 | 28.61 | — | 18 |
Table 1 Physicochemical properties of as-prepared catalysts.
Catalyst | Indium element molar proportion (%) a | BET surface area (m2 g-1) | Crystallite size (nm) b | |
---|---|---|---|---|
Co3O4 | In2O3 | |||
Co3O4 | 0 | 42.89 | 16.6 | — |
In1-Co19 | 4.8 | 52.15 | 12.3 | — |
In1-Co9 | 8.9 | 58.75 | 11.2 | — |
In1-Co4 | 19.5 | 71.88 | 5.7 | — |
In1-Co1 | 51.1 | 29.39 | 13.6 | 15.1 |
In2O3 | 100 | 28.61 | — | 18 |
Fig. 1. Morphological and structural characterizations of as-prepared catalysts. XRD patterns (a) and Raman spectra (b) of as-prepared Inx-Coy catalysts with different In/Co molar ratios versus the referential In2O3 and Co3O4 catalysts; TEM image (c) and high-resolution TEM image (d) of as-prepared In1-Co4; (e) HAADF-STEM image and corresponding EDS elemental mappings of as-prepared In1-Co4.
Fig. 2. Catalytic performances of the catalysts. (a) CO2 conversion, product selectivity; (b) CH3OH and CH4 yield of catalysts of Inx-Coy catalysts with different In/Co molar ratios versus the referential In2O3 and Co3O4 catalysts; (c) product selectivity of In1-Co4 by co-precipitation and physical-mixed methods; (d) product selectivity, CO2 conversion of In1-Co4 catalyst with different GHSV; (e,f) the comparison of catalytic performance between In1-Co4 and Co3O4 at different pressures or H2/CO2 feeding ratio conditions. Typical reaction conditions: P = 4.0 MPa, T = 300 °C, GHSV = 24000 cm3STP gcat-1 h-1, H2/CO2 = 3 (unless otherwise specified), all catalysts were reduced under 20% H2/Ar at 300 °C for 2 h before reaction.
Fig. 3. Comparative structural characterizations of as-prepared and reduced catalysts. (a) XRD patterns; (b) XPS spectroscopy with core level Co 2p, Raman spectra (c) of as-prepared and reduced In1-Co4 catalyst; (d) H2-TPR of as-prepared catalysts.
Fig. 4. Morphological and structural characterizations of the reduced catalysts. TEM image (a) and high-resolution TEM image (b) of the reduced In1-Co4; (c) EDS line scan profile of reduced In1-Co4.
Fig. 5. CO2 adsorption ability over different catalysts. (a) CO2-TPD profiles of reduced catalysts; (b) CO2 adsorption DRIFTS spectra of different catalysts at 25 °C; (c) CO2 adsorption DRIFTS spectra of In1-Co4 at different temperatures.
Surface species | Wavenumber (cm-1) | assignment | Ref. |
---|---|---|---|
CO2 | 2358 | ν(C=O) | [ |
CH4 | 3018 | ν(C-H) | [ |
Carbonate *CO3 | 1330 | νs(OCO) | [ |
1583 | νas(OCO) | [ | |
Bicarbonate *HCO3 | 1236 | νs(OCO) | [ |
1429 | δ(CH) | [ | |
1626, 1656 | νas(OCO) | [ | |
Formate *HCOO | 1347-1355 | νs(OCO) | [ |
1382 | δ(CH) | [ | |
1578-1581, 1642-1645 | νas(OCO) | [ | |
2867-2875 | ν(CH) | [ | |
2735, 2957-2964 | δ(CH) + ν (OCO) | [ | |
Methoxyl *CH3O | 1045-1049 | ν(CH) of terminal *CH3O | [ |
2820-2827, 2935-2942 | ν(CH3) | [ | |
*CO | 2077 | adsorbed linear CO species | [ |
Gaseous HCOOH | 1083 | δ(CH) | [ |
1214 | ν(CO) | [ | |
1789 | ν(C=O) | [ | |
2939-2943 | ν(CH) + δ(CH) | [ | |
Adsorbed HCOOH | 1119 | ν(CO) | [ |
1749 | ν(C=O) | [ |
Table 2 Infrared band assignments of the surface species on catalysts.
Surface species | Wavenumber (cm-1) | assignment | Ref. |
---|---|---|---|
CO2 | 2358 | ν(C=O) | [ |
CH4 | 3018 | ν(C-H) | [ |
Carbonate *CO3 | 1330 | νs(OCO) | [ |
1583 | νas(OCO) | [ | |
Bicarbonate *HCO3 | 1236 | νs(OCO) | [ |
1429 | δ(CH) | [ | |
1626, 1656 | νas(OCO) | [ | |
Formate *HCOO | 1347-1355 | νs(OCO) | [ |
1382 | δ(CH) | [ | |
1578-1581, 1642-1645 | νas(OCO) | [ | |
2867-2875 | ν(CH) | [ | |
2735, 2957-2964 | δ(CH) + ν (OCO) | [ | |
Methoxyl *CH3O | 1045-1049 | ν(CH) of terminal *CH3O | [ |
2820-2827, 2935-2942 | ν(CH3) | [ | |
*CO | 2077 | adsorbed linear CO species | [ |
Gaseous HCOOH | 1083 | δ(CH) | [ |
1214 | ν(CO) | [ | |
1789 | ν(C=O) | [ | |
2939-2943 | ν(CH) + δ(CH) | [ | |
Adsorbed HCOOH | 1119 | ν(CO) | [ |
1749 | ν(C=O) | [ |
Fig. 6. Dependence of CO2 conversion rate towards H2 partial pressure and CO2 partial pressure over reduced Co3O4 (a) and In1-Co4 (b). Reaction conditions: P = 4.0 MPa, T = 300 °C, H2/CO2 = 3, more details are in the supplementary materials.
Fig. 7. In-situ DRIFTS spectra of the CO2 + H2 reaction after CO2 adsorption on reduced Co3O4 (a) and In1-Co4 (b). Reaction conditions: P = 0.1 MPa, T = 250 °C, 5 mL/min CO2 + 15 mL/min H2, all catalysts were reduced under 20% H2/Ar at 300 °C for 2 h before reaction.
Fig. 8. HCOOH/CH3OH adsorption DRIFTS spectra on reduced Co3O4 and In1-Co4. HCOOH adsorption DRIFTS spectra on reduced Co3O4 (a) and In1-Co4 (b) at different temperatures. CH3OH adsorption DRIFTS spectra on reduced Co3O4 (c) and In1-Co4 (d) at different temperatures. All spectra were collected after introducing HCOOH/CH3OH for 30 min to ensure adsorption saturation; all catalysts were reduced under 20% H2/Ar at 300 °C for 2 h before the adsorption process.
Fig. 9. In-situ DRIFTS spectra of H2 reaction after CH3OH saturated adsorbed on reduced In1-Co4 and Co3O4. Reaction conditions: P = 0.1 MPa, T = 250 °C, methanol was first bubbled in for 30 min then the gas was switched to 15 mL/min H2 for further reaction; all catalysts were reduced under 20% H2/Ar at 300 °C for 2 h before the adsorption process.
Catalyst | P (MPa) | T (°C) | H2/CO2 ratio | GHSV (cm3STP gcat-1 h-1) | In/Co ratio | CO2 Conversion (%) | Methanol Selectivity (%) | rateMeOH (g gcat-1 h-1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
In@Co-2 | 5 | 300 | 4 | 27500 | 1 | 17 | 80 | 0.86 | [ |
MOF-derived In2O3@Co3O4 | 5 | 300 | 4 | 16500 | 3/4 | 20.5 | 65 | 0.65 | [ |
50% In2O3/Co/C-N | 2 | 300 | 3 | 3000 | — | 9.5 | 88.4 | 0.08 | [ |
In1-Co4 | 4 | 300 | 3 | 24000 | 1/4 | 8.9 | 46.5 | 0.31 | this work |
In1-Co9 | 4 | 300 | 3 | 24000 | 1/9 | 8.2 | 43.5 | 0.30 | this work |
Table 3 Performance comparison of different In-Co catalysts.
Catalyst | P (MPa) | T (°C) | H2/CO2 ratio | GHSV (cm3STP gcat-1 h-1) | In/Co ratio | CO2 Conversion (%) | Methanol Selectivity (%) | rateMeOH (g gcat-1 h-1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
In@Co-2 | 5 | 300 | 4 | 27500 | 1 | 17 | 80 | 0.86 | [ |
MOF-derived In2O3@Co3O4 | 5 | 300 | 4 | 16500 | 3/4 | 20.5 | 65 | 0.65 | [ |
50% In2O3/Co/C-N | 2 | 300 | 3 | 3000 | — | 9.5 | 88.4 | 0.08 | [ |
In1-Co4 | 4 | 300 | 3 | 24000 | 1/4 | 8.9 | 46.5 | 0.31 | this work |
In1-Co9 | 4 | 300 | 3 | 24000 | 1/9 | 8.2 | 43.5 | 0.30 | this work |
[1] | J. T. Houghton, G. J. Jenkins, J. J. Ephraums, in: Climate Change: The IPCC assessment, Cambridge Univ. Press, U.K., 1990. |
[2] | G. A. Olah, Angew. Chem. Int. Ed., 2005, 44, 2636-2639. |
[3] | S. Kattel, P. Liu, J. G. Chen, J. Am. Chem. Soc., 2017, 139, 9739-9754. |
[4] | P. Tian, Y. Wei, M. Ye, Z. Liu, ACS Catal., 2015, 5, 1922-1938. |
[5] | H. Koempel, W. Liebner, Stud. Surf. Sci. Catal., 2007, 167, 261-267. |
[6] | M. Bjørgen, F. Joensen, M. S. Holm, U. Olsbye, K.-P. Lillerud, S. Svelle, Appl. Catal. A, 2008, 345, 43-50. |
[7] | J. A. Rodriguez, P. Liu, D. J. Stacchiola, S. D. Senanayake, M. G. White, J. G. Chen, ACS Catal., 2015, 5, 6696-6706. |
[8] | K. Larmier, W. C. Liao, S. Tada, E. Lam, R. Verel, A. Bansode, A. Urakawa, A. Comas-Vives, C. Coperet, Angew. Chem. Int. Ed., 2017, 56, 2318-2323. |
[9] | S. Li, Y. Wang, B. Yang, L. Guo, Appl. Catal. A, 2019, 571, 51-60. |
[10] | B. Yang, W. Deng, L. Guo, T. Ishihara, Chin. J. Catal., 2020, 41, 1348-1359. |
[11] | X. Jiang, Y. Jiao, C. Moran, X. Nie, Y. Gong, X. Guo, K.S. Walton, C. Song, Catal. Commun., 2019, 118, 10-14. |
[12] | A. Bavykina, I. Yarulina, A. J. Al Abdulghani, L. Gevers, M. N. Hedhili, X. Miao, A. R. Galilea, A. Pustovarenko, A. Dikhtiarenko, A. Cadiau, A. Aguilar-Tapia, J. L. Hazemann, S. M. Kozlov, S. Oud-Chikh, L. Cavallo, J. Gascon, ACS Catal., 2019, 9, 6910-6918. |
[13] | M. S. Frei, C. Mondelli, R. Garcia-Muelas, K. S. Kley, B. Puertolas, N. Lopez, O. V. Safonova, J. A. Stewart, D. Curulla Ferre, J. Perez-Ramirez, Nat. Commun., 2019, 10, 3377. |
[14] | O. Martin, A. J. Martin, C. Mondelli, S. Mitchell, T. F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferre, J. Perez-Ramirez, Angew. Chem. Int. Ed., 2016, 55, 6261-6265. |
[15] | J. Ye, C. Liu, Q. Ge, J. Phys. Chem. C, 2012, 116, 7817-7825. |
[16] | A. García-Trenco, A. Regoutz, E. R. White, D. J. Payne, M. S. P. Shaffer, C. K. Williams, Appl. Catal. B, 2018, 220, 9-18. |
[17] | M. S. Frei, M. Capdevila-Cortada, R. García-Muelas, C. Mondelli, N. López, J. A. Stewart, D. Curulla Ferré, J. Pérez-Ramírez, J. Catal., 2018, 361, 313-321. |
[18] | X. Jia, K. Sun, J. Wang, C. Shen, C. J. Liu, J. Energy Chem., 2020, 50, 409-415. |
[19] | N. Rui, F. Zhang, K. Sun, Z. Liu, W. Xu, E. Stavitski, S. D. Senanayake, J. A. Rodriguez, C.-J. Liu, ACS Catal., 2020, 10, 11307-11317. |
[20] | N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge, C. J. Liu, Appl. Catal. B, 2017, 218, 488-497. |
[21] | T. Y. Chen, C. Cao, T. B. Chen, X. Ding, H. Huang, L. Shen, X. Cao, M. Zhu, J. Xu, J. Gao, Y. F. Han, ACS Catal., 2019, 9, 8785-8797. |
[22] | A. Cao, Z. Wang, H. Li, J. K. Nørskov, ACS Catal., 2021, 11, 1780-1786. |
[23] | J. Wang, G. Zhang, J. Zhu, X. Zhang, F. Ding, A. Zhang, X. Guo, C. Song, ACS Catal., 2021, 11, 1406-1423. |
[24] | B. Yang, L. Li, Z. Jia, X. Liu, C. Zhang, L. Guo, Chin. Chem. Lett., 2020, 31, 2627-2633. |
[25] | M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B. L. Kniep, M. Tovar, R. W. Fischer, J. K. Norskov, R. Schloegl, Science, 2012, 336, 893-897. |
[26] | J. T. Sun, I. S. Metcalfe, M. Sahibzada, Ind. Eng. Chem. Res., 1999, 38, 3868-3872. |
[27] | J. Bao, G. Yang, Y. Yoneyama, N. Tsubaki, ACS Catal., 2019, 9, 3026-3053. |
[28] | W. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian, Q. Zhang, Y. Wang, Chem. Soc. Rev., 2019, 48, 3193-3228. |
[29] | P. Gao, S. G. Li, X. N. Bu, S. S. Dang, Z. Y. Liu, H. Wang, L. S. Zhong, M. H. Qiu, C. G. Yang, J. Cai, W. Wei, Y. H. Sun, Nat. Chem., 2017, 9, 1019-1024. |
[30] | S. Dang, P. Gao, Z. Liu, X. Chen, C. Yang, H. Wang, L. Zhong, S. Li, Y. Sun, J. Catal., 2018, 364, 382-393. |
[31] | J. Ye, Q. Ge, C. J. Liu, Chem. Eng. Sci., 2015, 135, 193-201. |
[32] | N. Dostagir, C. Thompson, H. Kobayashi, A. M. Karim, A. Fukuoka, A. Shrotri, Catal. Sci. Technol., 2020, 10, 8196-8202. |
[33] | Z. Han, C. Tang, J. Wang, L. Li, C. Li, J. Catal., 2021, 394, 236-244. |
[34] | Z. Shi, Q. Tan, C. Tian, Y. Pan, X. Sun, J. Zhang, D. Wu, J. Catal., 2019, 379, 78-89. |
[35] | M. M. J. Li, H. Zou, J. Zheng, T. S. Wu, T. S. Chan, Y. L. Soo, X.P. Wu, X. Q. Gong, T. Chen, K. Roy, G. Held, S. C. E. Tsang, Angew. Chem. Int. Ed., 2020, 59, 16039-16046. |
[36] | T. Fang, B. Liu, Y. Lian, Z. Zhang, Ind. Eng. Chem. Res., 2020, 59, 19162-19167. |
[37] | A. Pustovarenko, A. Dikhtiarenko, A. Bavykina, L. Gevers, A. Ramírez, A. Russkikh, S. Telalovic, A. Aguilar, J. L. Hazemann, S. Ould-Chikh, J. Gascon, ACS Catal., 2020, 10, 5064-5076. |
[38] | J. L. Snider, V. Streibel, M. A. Hubert, T. S. Choksi, E. Valle, D. C. Upham, J. Schumann, M. S. Duyar, A. Gallo, F. Abild-Pedersen, T. F. Jaramillo, ACS Catal., 2019, 9, 3399-3412. |
[39] | J. Zhao, W. Han, J. Zhang, Z. Tang, Arab. J. Chem., 2020, 13, 4857-4867. |
[40] | C. Yang, S. Liu, Y. Wang, J. Song, G. Wang, S. Wang, Z. J. Zhao, R. Mu, J. Gong, Angew. Chem. Int. Ed., 2019, 58, 11242-11247. |
[41] | Y. Shen, J. Deng, S. Impeng, S. Li, T. Yan, J. Zhang, L. Shi, D. Zhang, Environ. Sci. Technol., 2020, 54, 10342-10350. |
[42] | J. Díez-Ramírez, P. Sánchez, V. Kyriakou, S. Zafeiratos, G.E. Marnellos, M. Konsolakis, F. Dorado, J. CO2 Utili., 2017, 21, 562-571. |
[43] | S. Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez, P. Liu, Science, 2017, 355, 1296-1299. |
[44] | B. Rivas-Murias, V. Salgueiriño, J. Raman Spectro., 2017, 48, 837-841. |
[45] | C. W. Tang, C. B. Wang, S. H. Chien, Thermochim. Acta, 2008, 473, 68-73. |
[46] | W. Li, G. Zhang, X. Jiang, Y. Liu, J. Zhu, F. Ding, Z. Liu, X. Guo, C. Song, ACS Catal., 2019, 9, 2739-2751. |
[47] | F. Liao, Y. Huang, J. Ge, W. Zheng, K. Tedsree, P. Collier, X. Hong, S. C. Tsang, Angew. Chem. Int. Ed., 2011, 50, 2162-2165. |
[48] | S. Kattel, B. Yan, Y. Yang, J. G. Chen, P. Liu, J. Am. Chem. Soc., 2016, 138, 12440-12450. |
[49] | T. Bielz, H. Lorenz, W. Jochum, R. Kaindl, F. Klauser, B. Klotzer, S. Penner, J. Phys. Chem. C, 2010, 114, 9022-9029. |
[50] | J. Wang, G. Li, Z. Li, C. Tang, Z. Feng, H. An, H. Liu, T. Liu, C. Li, Sci. Adv., 2017, 3, e1701290. |
[51] | S. Kattel, W. Yu, X. Yang, B. Yan, Y. Huang, W. Wan, P. Liu, J. G. Chen, Angew. Chem. Int. Ed., 2016, 55, 7968-7973. |
[52] | T. Chen, G. Wu, Z. Feng, G. Hu, W. Su, P. Ying, C. Li, Chin. J. Catal., 2008, 29, 105-107. |
[53] | J. Raskó, T. Kecskés, J. Kiss, J. Catal., 2004, 224, 261-268. |
[54] | J. J. Sims, C. A. Ould Hamou, R. Réocreux, C. Michel, J. B. Giorgi, J. Phys. Chem. C, 2018, 122, 20279-20288. |
[55] | P. A. U. Aldana, F. Ocampo, K. Kobl, B. Louis, F. Thibault-Starzyk, M. Daturi, P. Bazin, S. Thomas, A. C. Roger, Catal. Today, 2013, 215, 201-207. |
[56] | C. Yuan, N. Yao, X. Wang, J. Wang, D. Lv, X. Li, Chem. Eng. J., 2015, 260, 1-10. |
[57] | Q. Pan, J. Peng, S. Wang, S. Wang,, Catal. Sci. Technol., 2014, 4, 502-509. |
[58] | V. Navarro, M. A. van Spronsen, J. W. M. Frenken, Nat. Chem., 2016, 8, 929-934. |
[59] | Y. Dai, F. Yu, Z. Li, Y. An, T. Lin, Y. Yang, L. Zhong, H. Wang, Y. Sun, Chin. J. Chem., 2017, 35, 918-926. |
[60] | C. G. Visconti, L. Lietti, E. Tronconi, P. Forzatti, R. Zennaro, E. Finocchio, Appl. Catal. A, 2009, 355, 61-68. |
[61] | Y. Zhang, G. Jacobs, D. E. Sparks, M.E. Dry, B.H. Davis, Catal. Today, 2002, 71, 411-418. |
[62] | M. K. Gnanamani, G. Jacobs, R. A. Keogh, W. D. Shafer, D. E. Sparks, S. D. Hopps, G. A. Thomas, B. H. Davis, Appl. Catal. A, 2015, 499, 39-46. |
[63] | G. Melaet, W. T. Ralston, C. S. Li, S. Alayoglu, K. An, N. Musselwhite, B. Kalkan, G. A. Somorjai, J. Am. Chem. Soc., 2014, 136, 2260-2263. |
[64] | C. G. Visconti, M. Martinelli, L. Falbo, L. Fratalocchi, L. Lietti, Catal. Today, 2016, 277, 161-170. |
[1] | Junhui Liu, Yakun Song, Xuming Guo, Chunshan Song, Xinwen Guo. Recent advances in application of iron-based catalysts for COx hydrogenation to value-added hydrocarbons [J]. Chinese Journal of Catalysis, 2022, 43(3): 731-754. |
[2] | Jijie Wang, Jittima Meeprasert, Zhe Han, Huan Wang, Zhendong Feng, Chizhou Tang, Feng Sha, Shan Tang, Guanna Li, Evgeny A. Pidko, Can Li. Highly dispersed Cd cluster supported on TiO2 as an efficient catalyst for CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2022, 43(3): 761-770. |
[3] | Zhiming Zhou, Jinjin Chen, Qinlong Wang, Xingxing Jiang, Yan Shen. Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode [J]. Chinese Journal of Catalysis, 2022, 43(2): 433-441. |
[4] | Zhichao Lin, Zhan Jiang, Yubo Yuan, Huan Li, Hongxuan Wang, Yirong Tang, Chunchen Liu, Yongye Liang. Cobalt-N4 macrocyclic complexes for heterogeneous electrocatalysis of the CO2 reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(1): 104-109. |
[5] | Siyu Lu, Haiyan Yang, Zixuan Zhou, Liangshu Zhong, Shenggang Li, Peng Gao, Yuhan Sun. Effect of In2O3 particle size on CO2 hydrogenation to lower olefins over bifunctional catalysts [J]. Chinese Journal of Catalysis, 2021, 42(11): 2038-2048. |
[6] | Yang Chen, Guobing Mao, Yawen Tang, Heng Wu, Gang Wang, Li Zhang, Qi Liu. Synthesis of core-shell nanostructured Cr2O3/C@TiO2 for photocatalytic hydrogen production [J]. Chinese Journal of Catalysis, 2021, 42(1): 225-234. |
[7] | Wende Hu, Zheng-Jiang Shao, Xiao-Ming Cao, P. Hu. Multi sites vs single site for catalytic combustion of methane over Co3O4(110): A first-principles kinetic Monte Carlo study [J]. Chinese Journal of Catalysis, 2020, 41(9): 1369-1377. |
[8] | Bin Yang, Wei Deng, Limin Guo, Tatsumi Ishihara. Copper-ceria solid solution with improved catalytic activity for hydrogenation of CO2 to CH3OH [J]. Chinese Journal of Catalysis, 2020, 41(9): 1348-1359. |
[9] | Yizhi Wen, Tao Yang, Chuanqi Cheng, Xueru Zhao, Enzuo Liu, Jing Yang. Engineering Ru(IV) charge density in Ru@RuO2 core-shell electrocatalyst via tensile strain for efficient oxygen evolution in acidic media [J]. Chinese Journal of Catalysis, 2020, 41(8): 1161-1167. |
[10] | Aisulu Aitbekova, Cody J. Wrasman, Andrew R. Riscoe, Larissa Y. Kunz, Matteo Cargnello. Determining number of sites on ceria stabilizing single atoms via metal nanoparticle redispersion [J]. Chinese Journal of Catalysis, 2020, 41(6): 998-1005. |
[11] | Ziyan Zhao, Dmitry E. Doronkin, Yinghao Ye, Jan-Dierk Grunwaldt, Zeai Huang, Ying Zhou. Visible light-enhanced photothermal CO2 hydrogenation over Pt/Al2O3 catalyst [J]. Chinese Journal of Catalysis, 2020, 41(2): 286-293. |
[12] | Leiming Tao, Penghu Guo, Weiling Zhu, Tianle Li, Xiantai Zhou, Yongqing Fu, Changlin Yu, Hongbing Ji. Highly efficient mixed-metal spinel cobaltite electrocatalysts for the oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2020, 41(12): 1855-1863. |
[13] | Pengkun Wei, Xue Chen, Guizhu Wu, Jing Li, Yang Yang, Zeiwei Hao, Xiao Zhang, Jing Li, Lu Liu. Recent advances in cobalt-, nickel-, and iron-based chalcogen compounds as counter electrodes in dye-sensitized solar cells [J]. Chinese Journal of Catalysis, 2019, 40(9): 1282-1297. |
[14] | Jiangnan Xing, Fei Lin, Liutao Huang, Yuchang Si, Yijing Wang, Lifang Jiao. Coupled cobalt-doped molybdenum carbide@N-doped carbon nanosheets/nanotubes supported on nickel foam as a binder-free electrode for overall water splitting [J]. Chinese Journal of Catalysis, 2019, 40(9): 1352-1359. |
[15] | Jun Yang, Yuxi Liu, Jiguang Deng, Xingtian Zhao, Kunfeng Zhang, Zhuo Han, Hongxing Dai. AgAuPd/meso-Co3O4:High-performance catalysts for methanol oxidation [J]. Chinese Journal of Catalysis, 2019, 40(6): 837-848. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||