Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (6): 994-1003.DOI: 10.1016/S1872-2067(20)63720-2
• Article • Previous Articles Next Articles
Xiaoling Liu, Lei Chen, Hongzhong Xu, Shi Jiang, Yu Zhou*(), Jun Wang#(
)
Received:
2020-07-18
Accepted:
2020-08-31
Online:
2021-06-18
Published:
2021-01-30
Contact:
Yu Zhou,Jun Wang
About author:
#E-mail: junwang@njtech.edu.cnSupported by:
Xiaoling Liu, Lei Chen, Hongzhong Xu, Shi Jiang, Yu Zhou, Jun Wang. Straightforward synthesis of beta zeolite encapsulated Pt nanoparticles for the transformation of 5-hydroxymethyl furfural into 2,5-furandicarboxylic acid[J]. Chinese Journal of Catalysis, 2021, 42(6): 994-1003.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63720-2
Fig. 1. SEM (A), and TEM(B) images of 0.2%Pt@Beta; (C) HAADF-STEM, and corresponding elemental mapping images for Si, Al, O, and Pt elements of 0.2%Pt@Beta.
Fig. 2. (A-C) powder XRD patterns; (D) N2 sorption isotherms (the inset is the pore size dispersion curves); (E) FTIR spectra; (F) Survey scan; (G) Pt 4d XPS spectra.
Sample | SBET a (m2 g-1) | Vp b (cm3 g-1) | Dav c(nm) | Pt d (wt%) | Unit cell parameters e (Å) | ||
---|---|---|---|---|---|---|---|
a | b | c | |||||
Beta | 511 | 0.31 | 2.5 | 0 | 12.66 | 12.65 | 26.41 |
0.2%Pt@Beta | 497 | 0.28 | 2.2 | 0.20 | 12.65 | 12.56 | 26.69 |
0.5%Pt@Beta | 509 | 0.27 | 2.1 | 0.41 | 12.69 | 12.57 | 26.49 |
0.2%Pt/Beta | 468 | 0.25 | 2.1 | 0.20 | 12.66 | 12.66 | 26.40 |
Table 1 Textual properties.
Sample | SBET a (m2 g-1) | Vp b (cm3 g-1) | Dav c(nm) | Pt d (wt%) | Unit cell parameters e (Å) | ||
---|---|---|---|---|---|---|---|
a | b | c | |||||
Beta | 511 | 0.31 | 2.5 | 0 | 12.66 | 12.65 | 26.41 |
0.2%Pt@Beta | 497 | 0.28 | 2.2 | 0.20 | 12.65 | 12.56 | 26.69 |
0.5%Pt@Beta | 509 | 0.27 | 2.1 | 0.41 | 12.69 | 12.57 | 26.49 |
0.2%Pt/Beta | 468 | 0.25 | 2.1 | 0.20 | 12.66 | 12.66 | 26.40 |
Entry | Sample | Conversion b (%) | Yield c (%) | Selectivity d (%) | TON e | ||
---|---|---|---|---|---|---|---|
HMFCA | FFCA | FDCA | |||||
1 | 0.2%Pt@Beta | >99 | 0 | 0 | 99 | 99 | 97 |
2 | Beta | 12 | 5 | 1 | 1 | 8 | — |
3 | 0.2%Pt/Beta | 96 | 18 | 34 | 37 | 39 | 36 |
4 | 0.5%Pt@Beta | 97 | 12 | 36 | 44 | 45 | 43 |
5 | 0.2%Pt@Beta-OHf | 86 | 15 | 12 | 50 | 58 | 49 |
6 | 0.2%Pt/Beta-OHf | 82 | 12 | 14 | 14 | 17 | 14 |
7 | Pt/C | >99 | 0 | 25 | 32 | 32 | 31 |
Table 2 Oxidation of HMF to FDCA a.
Entry | Sample | Conversion b (%) | Yield c (%) | Selectivity d (%) | TON e | ||
---|---|---|---|---|---|---|---|
HMFCA | FFCA | FDCA | |||||
1 | 0.2%Pt@Beta | >99 | 0 | 0 | 99 | 99 | 97 |
2 | Beta | 12 | 5 | 1 | 1 | 8 | — |
3 | 0.2%Pt/Beta | 96 | 18 | 34 | 37 | 39 | 36 |
4 | 0.5%Pt@Beta | 97 | 12 | 36 | 44 | 45 | 43 |
5 | 0.2%Pt@Beta-OHf | 86 | 15 | 12 | 50 | 58 | 49 |
6 | 0.2%Pt/Beta-OHf | 82 | 12 | 14 | 14 | 17 | 14 |
7 | Pt/C | >99 | 0 | 25 | 32 | 32 | 31 |
Fig. 3. (A) Kinetic profile and (B) reusability of 0.2%Pt@Beta in the oxidation of HMF into FDCA. Reaction conditions: 0.1 mmol HMF, 100 mg catalyst, Na2CO3/HMF molar ratio = 6, 4 mL water, 90 °C, 24 h for (B) O2 balloon.
Fig. 4. Adsorption amount of HMF, HMFCA, FFCA, and FDCA on 0.2%Pt@Beta (A), 0.2%Pt/Beta (C), 0.5%Pt@Beta (D), and 0.2%Pt@Beta-OH (E). Adsorption conditions: 0.01 mmol adsorbate (Diagonal stripe) or 0.01 mmol adsorbate in the presence of 0.06 mmol Na2CO3 (Blank), 20 mg 0.2%Pt@Beta, 1 mL water, room temperature, 24 h. (B) Zeta potentials of 0.2%Pt@Beta colloidal particles from an emulsion with an aqueous solution of adsorbate (1 mmol L-1) (Blue diamond) or an aqueous solution of adsorbate (1 mmol L-1) in the presence of Na2CO3 (6 mmol L-1) (Black square). (F) The changing trend of the yield with the adsorption amount of FFCA.
|
[1] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals [J]. Chinese Journal of Catalysis, 2023, 52(9): 99-126. |
[2] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[3] | Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 83-108. |
[4] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[5] | Duozheng Ma, Xiangcheng Li, Chuang Liu, Caroline Versluis, Yingchun Ye, Zhendong Wang, Eelco T. C. Vogt, Bert M. Weckhuysen, Weimin Yang. SCM-36 zeolite nanosheets applied in the production of renewable p-xylene from ethylene and 2,5-dimethylfuran [J]. Chinese Journal of Catalysis, 2023, 47(4): 200-213. |
[6] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[7] | Changcheng Wei, Wenna Zhang, Kuo Yang, Xiu Bai, Shutao Xu, Jinzhe Li, Zhongmin Liu. An efficient way to use CO2 as chemical feedstock by coupling with alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 138-149. |
[8] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[9] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[10] | Longkang Zhang, Yue Ma, Changcheng Liu, Zhipeng Wan, Chengwei Zhai, Xin Wang, Hao Xu, Yejun Guan, Peng Wu. Demetallation and reduction induced ultra-dispersed PtZn alloy confined in zeolite for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 55(12): 241-252. |
[11] | Peerapol Pornsetmetakul, Ferdy J. A. G. Coumans, Rim C. J. van de Poll, Anna Liutkova, Duangkamon Suttipat, Brahim Mezari, Chularat Wattanakit, Emiel J. M. Hensen. Post-synthesis metal (Sn, Zr, Hf) modification of BEA zeolite: Combined Lewis and Brønsted acidity for cascade catalysis [J]. Chinese Journal of Catalysis, 2023, 55(12): 200-215. |
[12] | Xuefei Weng, Shuangli Yang, Ding Ding, Mingshu Chen, Huilin Wan. Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2001-2009. |
[13] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[14] | Chuncheng Liu, Evgeny A. Uslamin, Sophie H. van Vreeswijk, Irina Yarulina, Swapna Ganapathy, Bert M. Weckhuysen, Freek Kapteijn, Evgeny A. Pidko. An integrated approach to the key parameters in methanol-to-olefins reaction catalyzed by MFI/MEL zeolite materials [J]. Chinese Journal of Catalysis, 2022, 43(7): 1879-1893. |
[15] | Wenhao Cui, Dali Zhu, Juan Tan, Nan Chen, Dong Fan, Juan Wang, Jingfeng Han, Linying Wang, Peng Tian, Zhongmin Liu. Synthesis of mesoporous high-silica zeolite Y and their catalytic cracking performance [J]. Chinese Journal of Catalysis, 2022, 43(7): 1945-1954. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||