Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (12): 2216-2224.DOI: 10.1016/S1872-2067(21)63842-1
• Articles • Previous Articles Next Articles
Shujing Zhanga,b,c, Hong Maa,c,#(), Yuxia Suna,b,c, Xin Liua,b,c, Meiyun Zhanga,b,c, Yang Luoa,b,c, Jin Gaoa,c, Jie Xua,c,*(
)
Received:
2021-04-02
Accepted:
2021-04-02
Online:
2021-12-18
Published:
2021-05-19
Contact:
Hong Ma,Jie Xu
About author:
# Tel/Fax: +86-411-84379278; E-mail: mahong@dicp.ac.cnSupported by:
Shujing Zhang, Hong Ma, Yuxia Sun, Xin Liu, Meiyun Zhang, Yang Luo, Jin Gao, Jie Xu. Selective tandem hydrogenation and rearrangement of furfural to cyclopentanone over CuNi bimetallic catalyst in water[J]. Chinese Journal of Catalysis, 2021, 42(12): 2216-2224.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63842-1
Fig. 1. (a) Schematic illustration of the synthesis route for the CuNi/Al-MCM-41 catalyst; TEM images of Cu/Al-MCM-41 (b), Ni/Al-MCM-41 (c), and CuNi/Al-MCM-41 (d,f,g); (e,h) HRTEM images of CuNi/Al-MCM-41; (i) XRD patterns of CuNi/Al-MCM-41 (1), Cu/Al-MCM-41 (2), and Ni/Al-MCM-41 (3).
Fig. 2. Scanning TEM high angle annular dark field (STEM-HAADF) image, the corresponding EDX elemental mapping of the O, Si, Al, Ni, and Cu, and line-scanning profiles recorded along the line marked for CuNi/Al-MCM-41 catalyst.
Fig. 3. Hydrogenation rearrangement of FA over CuNi bimetallic catalysts. Reaction condition: 0.5 g FA, 0.0625 g catalysts, 160 °C, 2.0 MPa H2, 5 h, 5 mL H2O. a: 10 mL H2O.
Fig. 5. XPS spectra of different catalysts. (a) Ni 2p of Ni/Al-MCM-41 and CuNi/Al-MCM-41; (b) Cu 2p of Cu/Al-MCM-41 and CuNi/Al-MCM-41; (c) Cu Auger 2p of Cu/Al-MCM-41 and CuNi/Al-MCM-41.
Entry | Catalyst | Conversion (mol%) | Product yield (mol%) | ||||
---|---|---|---|---|---|---|---|
FAL | CPO | CPL | THFA | Others | |||
1 | CuNi/Al-MCM-41 | 98.3 | 1.5 | 67.7 | 1.7 | 8.0 | 19.4 |
2 | Ni/Al-MCM-41 | 66.8 | 2.6 | 16.8 | n.d. | 2.6 | 44.8 |
3 | Cu/Al-MCM-41 | 49.6 | 5.3 | 1.2 | n.d. | 0.9 | 42.2 |
4 | Cu/Al-MCM-41+ Ni/Al-MCM-41 Ni/Al-MCM-41 | 63.9 | 7.0 | 38.8 | n.d. | 3.0 | 15.1 |
Table 1 Catalytic performance of the FA hydrogenation rearrangement with different catalysts.
Entry | Catalyst | Conversion (mol%) | Product yield (mol%) | ||||
---|---|---|---|---|---|---|---|
FAL | CPO | CPL | THFA | Others | |||
1 | CuNi/Al-MCM-41 | 98.3 | 1.5 | 67.7 | 1.7 | 8.0 | 19.4 |
2 | Ni/Al-MCM-41 | 66.8 | 2.6 | 16.8 | n.d. | 2.6 | 44.8 |
3 | Cu/Al-MCM-41 | 49.6 | 5.3 | 1.2 | n.d. | 0.9 | 42.2 |
4 | Cu/Al-MCM-41+ Ni/Al-MCM-41 Ni/Al-MCM-41 | 63.9 | 7.0 | 38.8 | n.d. | 3.0 | 15.1 |
Fig. 6. Relevance of pH and catalytic performance of CuNi/Al-MCM-41. Reaction condition: 0.5 g FA, 0.0625 g CuNi/Al-MCM-41, 160 °C, 2.0 MPa, 5 h, 10 mL H2O (regulated by H2SO4 and NaOH).
Fig. 7. Comparison of reactions in solutions at different pH values without catalysts using starting substrates of FA (a), FAL (b), and HCP (c), respectively, and the corresponding typical IR spectraofpolymers extracted from reaction of FA (d), FAL (e), and HCP (f) at the pH of 11.45. Reaction conditions: 0.5 g substrate, 2.0 MPa H2, 160 °C, and 10 mL H2O with initial pH of 2.81, 7.05, 11.45 (regulated by H2SO4 and NaOH).
Entry | FA:H2O (wt%) | Temperature (°C) | Conversion (mol%) | Selectivity (mol%) | |||||
---|---|---|---|---|---|---|---|---|---|
FAL | CPO | CPL | THFA | Others | Excessive hydrogenation | ||||
1 | 5 | 80 | 38.1 | 64.7 | n.d. | 2.4 | 3.3 | 29.6 | 5.7 |
2 | 5 | 120 | 83.3 | 45.0 | 14.7 | 1.1 | 1.5 | 37.7 | 2.6 |
3 | 5 | 140 | 89.6 | 7.3 | 53.6 | 0.3 | 2.8 | 36.1 | 3.1 |
4 | 5 | 160 | 96.4 | 2.1 | 83.6 | 2.4 | 6.2 | 5.7 | 8.6 |
5 | 5 | 180 | 97.7 | 0.6 | 60.7 | 1.2 | 6.1 | 31.3 | 7.4 |
6 | 20 | 160 | 96.0 | 2.7 | 44.2 | 2.2 | 9.9 | 41.0 | 12.1 |
7 | 10 | 160 | 94.5 | 1.1 | 59.2 | 1.3 | 6.3 | 32.1 | 7.6 |
8 | 2.5 | 160 | 96.6 | 1.3 | 91.1 | 3.2 | 1.2 | 3.1 | 4.4 |
9 a | 1.2 | 160 | 99.0 | n.d. | 97.7 | 0.6 | n.d. | 1.7 | 0.6 |
10 b | 5 | 160 | 99.6 | 0.6 | 37.0 | 15.2 | 21.0 | 26.2 | 36.2 |
11 c | 5 | 160 | 99.7 | 0.5 | 42.4 | 9.3 | 4.4 | 43.4 | 13.7 |
Table 2 Influence of FA concentration and temperature on hydrogenation rearrangement over CuNi/Al-MCM-41.
Entry | FA:H2O (wt%) | Temperature (°C) | Conversion (mol%) | Selectivity (mol%) | |||||
---|---|---|---|---|---|---|---|---|---|
FAL | CPO | CPL | THFA | Others | Excessive hydrogenation | ||||
1 | 5 | 80 | 38.1 | 64.7 | n.d. | 2.4 | 3.3 | 29.6 | 5.7 |
2 | 5 | 120 | 83.3 | 45.0 | 14.7 | 1.1 | 1.5 | 37.7 | 2.6 |
3 | 5 | 140 | 89.6 | 7.3 | 53.6 | 0.3 | 2.8 | 36.1 | 3.1 |
4 | 5 | 160 | 96.4 | 2.1 | 83.6 | 2.4 | 6.2 | 5.7 | 8.6 |
5 | 5 | 180 | 97.7 | 0.6 | 60.7 | 1.2 | 6.1 | 31.3 | 7.4 |
6 | 20 | 160 | 96.0 | 2.7 | 44.2 | 2.2 | 9.9 | 41.0 | 12.1 |
7 | 10 | 160 | 94.5 | 1.1 | 59.2 | 1.3 | 6.3 | 32.1 | 7.6 |
8 | 2.5 | 160 | 96.6 | 1.3 | 91.1 | 3.2 | 1.2 | 3.1 | 4.4 |
9 a | 1.2 | 160 | 99.0 | n.d. | 97.7 | 0.6 | n.d. | 1.7 | 0.6 |
10 b | 5 | 160 | 99.6 | 0.6 | 37.0 | 15.2 | 21.0 | 26.2 | 36.2 |
11 c | 5 | 160 | 99.7 | 0.5 | 42.4 | 9.3 | 4.4 | 43.4 | 13.7 |
|
[1] | Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 83-108. |
[2] | Hongfang Wang, Leitao Xu, Jingcheng Wu, Peng Zhou, Shasha Tao, Yuxuan Lu, Xianwen Wu, Shuangyin Wang, Yuqin Zou. Boosting 5-hydroxymethylfurfural electrooxidation in neutral electrolytes via TEMPO-enhanced dehydrogenation and OH adsorption [J]. Chinese Journal of Catalysis, 2023, 46(3): 148-156. |
[3] | Jiang Zhang, Zijian Wang, Mugeng Chen, Yifeng Zhu, Yongmei Liu, Heyong He, Yong Cao, Xinhe Bao. N-doped carbon layer-coated Au nanocatalyst for H2-free conversion of 5-hydroxymethylfurfural to 5-methylfurfural [J]. Chinese Journal of Catalysis, 2022, 43(8): 2212-2222. |
[4] | Cong Liu, Xuanhao Mei, Ce Han, Xue Gong, Ping Song, Weilin Xu. Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1618-1633. |
[5] | Zhenyu Li, Liyuan Huai, Panpan Hao, Xi Zhao, Yongzhao Wang, Bingsen Zhang, Chunlin Chen, Jian Zhang. Oxidation of 2,5-bis(hydroxymethyl)furan to 2,5-furandicarboxylic acid catalyzed by carbon nanotube-supported Pd catalysts [J]. Chinese Journal of Catalysis, 2022, 43(3): 793-801. |
[6] | Wenbiao Zhang, Yanghao Shi, Yang Yang, Jingwen Tan, Qingsheng Gao. Facet dependence of electrocatalytic furfural hydrogenation on palladium nanocrystals [J]. Chinese Journal of Catalysis, 2022, 43(12): 3116-3125. |
[7] | Qifeng Lei, Chang Wang, Weili Dai, Guangjun Wu, Naijia Guan, Michael Hunger, Landong Li. Tandem Lewis acid catalysis for the conversion of alkenes to 1,2-diols in the confined space of bifunctional TiSn-Beta zeolite [J]. Chinese Journal of Catalysis, 2021, 42(7): 1176-1184. |
[8] | Na Huo, Hong Ma, Xinhong Wang, Tianlong Wang, Gang Wang, Ting Wang, Leilei Hou, Jin Gao, Jie Xu. High-efficiency oxidative esterification of furfural to methylfuroate with a non-precious metal Co-N-C/MgO catalyst [J]. Chinese Journal of Catalysis, 2017, 38(7): 1148-1154. |
[9] | Sanjay Srivastava, G.C.Jadeja, Jigisha Parikh. Influence of supports for selective production of 2,5-dimethylfuran via bimetallic copper-cobalt catalyzed 5-hydroxymethylfurfural hydrogenolysis [J]. Chinese Journal of Catalysis, 2017, 38(4): 699-709. |
[10] | Yue Shen, Yuru Kang, Jiankui Sun, Chao Wang, Bo Wang, Feng Xu, Runcang Sun. Efficient production of 5-hydroxymethylfurfural from hexoses using solid acid SO42-/In2O3-ATP in a biphasic system [J]. Chinese Journal of Catalysis, 2016, 37(8): 1362-1368. |
[11] | Jing Dong, Mingming Zhu, Gaoshuo Zhang, Yongmei Liu, Yong Cao, Su Liu, Yangdong Wang. Highly selective supported gold catalyst for CO-driven reduction of furfural in aqueous media [J]. Chinese Journal of Catalysis, 2016, 37(10): 1669-1675. |
[12] | Sanjay Srivastava, Pravakar Mohanty, Jigisha K. Parikh, Ajay K. Dalai, S. S. Amritphale, Anup K. Khare. Cr-free Co-Cu/SBA-15 catalysts for hydrogenation of biomass-derived α-, β-unsaturated aldehyde to alcohol [J]. Chinese Journal of Catalysis, 2015, 36(7): 933-942. |
[13] | Liang Li, Jianghong Ding, Jin-Gang Jiang, Zhiguo Zhu, Peng Wu. One-pot synthesis of 5-hydroxymethylfurfural from glucose using bifunctional [Sn,Al]-Beta catalysts [J]. Chinese Journal of Catalysis, 2015, 36(6): 820-828. |
[14] | Jiahan Xie, Junfang Nie, Haichao Liu. Aqueous-phase selective aerobic oxidation of 5-hydroxymethylfurfural on Ru/C in the presence of base [J]. Chinese Journal of Catalysis, 2014, 35(6): 937-944. |
[15] | Gabriel Morales, Juan A. Melero, Marta Paniagua, Jose Iglesias, Blanca Hernández, María Sanz. Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide [J]. Chinese Journal of Catalysis, 2014, 35(5): 644-655. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||