Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (11): 1903-1920.DOI: 10.1016/S1872-2067(21)63841-X
• Review • Previous Articles Next Articles
Leiduan Haoa, Qineng Xiab,$(), Qiang Zhangc,#(
), Justus Masad, Zhenyu Suna,*(
)
Received:
2021-04-15
Revised:
2021-04-15
Online:
2021-11-18
Published:
2021-05-20
Contact:
Qineng Xia,Qiang Zhang,Zhenyu Sun
About author:
#Tel: +1-509-335-1269; E-mail: q.zhang@wsu.eduSupported by:
Leiduan Hao, Qineng Xia, Qiang Zhang, Justus Masa, Zhenyu Sun. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives[J]. Chinese Journal of Catalysis, 2021, 42(11): 1903-1920.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63841-X
Fig. 1. (a) The structure of the H8L1 ligand; (b) perspective view of 3D porous framework of NTU-180 (yellow and blue balls represent two kinds of pores). Adapted with permission from Ref. [64]. Copyright 2016, American Chemical Society. (c) The structure of the acylamide-containing ligand.
Fig. 2. The structure of the metallosalen-derived dicarboxylic ligand and the construction of ZSF-1. Adapted with permission from Ref. [44]. Copyright 2018, American Chemical Society.
Fig. 3. (a-c) Schematic illustration of the synthesis of ZnTCPP?(Br-)Etim-UiO-66: Sequential mixed-ligands of different geometry, post-synthetic ionization, and post-synthetic metalation strategy (a); one-pot synthesis based on [(Br-)(Etim-H2BDC)+] ligand (b, c). Im-Zr6, imidazole functionalized Zr6 cluster; (Br-)Etim-Zr6, imidazolium functionalized Zr6 cluster. The yellow sphere represents the pore cavity. (d) Proposed mechanism of the catalytic process. Adapted with permission from Ref. [85]. Copyright 2018, American Chemical Society.
Reaction | Catalyst/Active sites | Optimal reaction conditions and performance | Ref. |
---|---|---|---|
| 1-Zn/Lewis acidic Zn2+ | r.t., 1.2 MPa, 60 h, 3.75 mol% TBAB; propylene carbonate yield: 99% | [ |
Yb-DDIA/Lewis acidic Yb3+ | 60 °C, 1.0 MPa, 12 h, 0.5 mol% TBAB; 5 substrates, yield: up to 93% | [ | |
RE-BDC (RE = Y or Tb or Er)/Y3+ or Tb3+ or Er3+ | 60 °C, 1.0 MPa, 12 h, 1.05 mol% TBAB; 5 substrates, yield: up to 95% | [ | |
Sm-BTB/Sm3+ | 80 °C, 0.1 MPa, 15 h, 1.0 mol% TBAB; 5 substrates, yield: up to 100% | [ | |
CZ-BDO/Co-Zn and Lewis basic N | 100 °C, 3.0 MPa, 5 h; 4 substrates, yield: up to 97.05% | [ | |
| ErCo-1/Er3+ | 70 °C, 1.0 MPa, 10 h, 5.0 mol% TBAB; 5 substrates, yield: up to 94% | [ |
| CuGd-I or CuGd-II/ [Cu12I12] or [Cu3I2] | 80 °C, 0.1 MPa, 4 h, 1.2 equiv. Cs2CO3, 1.2 equiv. nBuI, ethylene carbonate; 14 substrates, yield: up to 86% | [ |
| CuIn-1/[Cu4I4] and In3+ | 50 °C, 0.5 MPa, 10 h, TEA; 8 substrates, yield: up to 99% | [ |
| Ag27-MOF/Ag | 25 °C, 0.1 MPa, 6 h, 0.1 equiv. DBU, acetonitrile; 12 substrates, yield: up to 99% | [ |
Table 1 CO2 conversion reactions catalyzed by MOFs with designed metal centers.
Reaction | Catalyst/Active sites | Optimal reaction conditions and performance | Ref. |
---|---|---|---|
| 1-Zn/Lewis acidic Zn2+ | r.t., 1.2 MPa, 60 h, 3.75 mol% TBAB; propylene carbonate yield: 99% | [ |
Yb-DDIA/Lewis acidic Yb3+ | 60 °C, 1.0 MPa, 12 h, 0.5 mol% TBAB; 5 substrates, yield: up to 93% | [ | |
RE-BDC (RE = Y or Tb or Er)/Y3+ or Tb3+ or Er3+ | 60 °C, 1.0 MPa, 12 h, 1.05 mol% TBAB; 5 substrates, yield: up to 95% | [ | |
Sm-BTB/Sm3+ | 80 °C, 0.1 MPa, 15 h, 1.0 mol% TBAB; 5 substrates, yield: up to 100% | [ | |
CZ-BDO/Co-Zn and Lewis basic N | 100 °C, 3.0 MPa, 5 h; 4 substrates, yield: up to 97.05% | [ | |
| ErCo-1/Er3+ | 70 °C, 1.0 MPa, 10 h, 5.0 mol% TBAB; 5 substrates, yield: up to 94% | [ |
| CuGd-I or CuGd-II/ [Cu12I12] or [Cu3I2] | 80 °C, 0.1 MPa, 4 h, 1.2 equiv. Cs2CO3, 1.2 equiv. nBuI, ethylene carbonate; 14 substrates, yield: up to 86% | [ |
| CuIn-1/[Cu4I4] and In3+ | 50 °C, 0.5 MPa, 10 h, TEA; 8 substrates, yield: up to 99% | [ |
| Ag27-MOF/Ag | 25 °C, 0.1 MPa, 6 h, 0.1 equiv. DBU, acetonitrile; 12 substrates, yield: up to 99% | [ |
Fig. 4. Plausible mechanism of cycloaddition reaction between CO2 and epoxides catalyzed by CZ-BDO. Adapted with permission from Ref. [53]. Copyright 2020, Royal Society of Chemistry.
Fig. 5. (a) Schematic illustration of the synthesis of hierarchically porous mesoCu@Al-bpydc; (b) catalytic performance of microCu@Al-bpydc and mesoCu@Al-bpydc with different epoxides. Adapted with permission from Ref. [115]. Copyright 2019, WILEY-VCH.
Fig. 6. (a) The building blocks of mesoporous JLU-MOF58 (simplified as linear rod and cube); (b) two types of mesoporous cages in JLU-MOF58. Adapted with permission from Ref. [54]. Copyright 2019, American Chemical Society.
Fig. 8. Schematic illustration of the preparation of CuZn@UiO-bpy. Adapted with permission from Ref. [120]. Copyright 2017, American Chemical Society.
Reaction | Catalyst/Active sites | Optimal reaction conditions and performance | Ref. |
---|---|---|---|
| Ag@MIL-101(Cr)/Ag Ag@MIL-101(Fe)/Ag Ag@UiO-66(Zr)/Ag | 50 °C, 0.1 MPa, 15 h, 1.5 equiv. Cs2CO3, DMF; 5 substrates, yield: up to 98.7% | [ |
Ag@Co(II)-salicylate/Ag | 80 °C, 0.1 MPa, 14 h, 1.5 equiv. Cs2CO3, DMF; 7 substrates, yield: up to 98% | [ | |
Pd-Cu@MIL-101(Cr)/Pd-Cu | 25 °C, 0.1 MPa, 24 h, 1.5 equiv. Cs2CO3, DMF; 5 substrates, yield: up to 98% | [ | |
AuAg@ZIF-8/AuAg | 50 °C, 0.1 MPa, 24 h, 0.24 equiv. K2CO3, DMF; 6 substrates, yield: up to 100% | [ | |
CO2 hydrogenation to methanol | CuZn@UiO-bpy/Cu/ZnOx | 250 °C, 4 MPa total pressure; methanol space-time yield: 2.59 gMeOH kgCu-1 h-1, selectivity: 100% | [ |
Cu@UiO-66/Cu | 175 °C, 1 MPa total pressure; methanol selectivity: 100%, TOF: 3.7 × 10-3 s-1 | [ | |
CO2 hydrogenation to light olefins | Fe2O3@ZIF-8/Fe2O3 | 300 °C, 3 MPa total pressure; light olefin C2-C4 selectivity: ~20% | [ |
CO2 hydrogenation to methane | Ni@MIL-101(Cr)/Ni | 300 °C, H2 to CO2 ratio = 4:1; methane selectivity: 100%, TOF: 1.63 × 10-3 s-1 | [ |
Ni@UiO-66/Ni | 300 °C, 1 MPa total pressure; CO2 conversion: 57.6%, methane selectivity: 100% | [ | |
CO2 hydrogenation to CO | Pt@UiO-67/Pt | 220-280 °C, H2 to CO2 ratio = 6:1; CO selectivity: > 90% | [ |
Pt@MOF-74(Zn)/Pt | 400 °C, 2 MPa total pressure, H2 to CO2 ratio = 3:1; CO2 conversion: 33.8%, CO selectivity: > 99% | [ | |
Pt-Au@Pd@[Co2(oba)4(3-bpd h)2]·4H2O/Pt-Au@Pd | 400 °C, 2 MPa total pressure, H2 to CO2 ratio = 3:1; CO2 conversion: 15.6%, CO selectivity: 87.5% | [ |
Table 2 CO2 conversion reactions catalyzed by MNPs@MOFs.
Reaction | Catalyst/Active sites | Optimal reaction conditions and performance | Ref. |
---|---|---|---|
| Ag@MIL-101(Cr)/Ag Ag@MIL-101(Fe)/Ag Ag@UiO-66(Zr)/Ag | 50 °C, 0.1 MPa, 15 h, 1.5 equiv. Cs2CO3, DMF; 5 substrates, yield: up to 98.7% | [ |
Ag@Co(II)-salicylate/Ag | 80 °C, 0.1 MPa, 14 h, 1.5 equiv. Cs2CO3, DMF; 7 substrates, yield: up to 98% | [ | |
Pd-Cu@MIL-101(Cr)/Pd-Cu | 25 °C, 0.1 MPa, 24 h, 1.5 equiv. Cs2CO3, DMF; 5 substrates, yield: up to 98% | [ | |
AuAg@ZIF-8/AuAg | 50 °C, 0.1 MPa, 24 h, 0.24 equiv. K2CO3, DMF; 6 substrates, yield: up to 100% | [ | |
CO2 hydrogenation to methanol | CuZn@UiO-bpy/Cu/ZnOx | 250 °C, 4 MPa total pressure; methanol space-time yield: 2.59 gMeOH kgCu-1 h-1, selectivity: 100% | [ |
Cu@UiO-66/Cu | 175 °C, 1 MPa total pressure; methanol selectivity: 100%, TOF: 3.7 × 10-3 s-1 | [ | |
CO2 hydrogenation to light olefins | Fe2O3@ZIF-8/Fe2O3 | 300 °C, 3 MPa total pressure; light olefin C2-C4 selectivity: ~20% | [ |
CO2 hydrogenation to methane | Ni@MIL-101(Cr)/Ni | 300 °C, H2 to CO2 ratio = 4:1; methane selectivity: 100%, TOF: 1.63 × 10-3 s-1 | [ |
Ni@UiO-66/Ni | 300 °C, 1 MPa total pressure; CO2 conversion: 57.6%, methane selectivity: 100% | [ | |
CO2 hydrogenation to CO | Pt@UiO-67/Pt | 220-280 °C, H2 to CO2 ratio = 6:1; CO selectivity: > 90% | [ |
Pt@MOF-74(Zn)/Pt | 400 °C, 2 MPa total pressure, H2 to CO2 ratio = 3:1; CO2 conversion: 33.8%, CO selectivity: > 99% | [ | |
Pt-Au@Pd@[Co2(oba)4(3-bpd h)2]·4H2O/Pt-Au@Pd | 400 °C, 2 MPa total pressure, H2 to CO2 ratio = 3:1; CO2 conversion: 15.6%, CO selectivity: 87.5% | [ |
Fig. 9. Schematic illustration of the synthesis of (a) (R,R)-salen(Co(III))@IRMOF-3-AM. Adapted with permission from Ref. [132]. Copyright 2017, Royal Society of Chemistry. (b) Salen-Cu(II)@MIL-101(Cr). Adapted with permission from Ref. [133]. Copyright 2017, Elsevier.
Fig. 10. Schematic illustration of the synthesis of [Ru]@UiO-66 through aperture-opening encapsulation. Adapted with permission from Ref. [137]. Copyright 2018, American Chemical Society.
Fig. 11. (a) Schematic illustration of the synthesis of polyILs@MIL-101; (b) Catalytic performance of different catalysts. Adapted with permission from Ref. [138]. Copyright 2018, American Chemical Society.
Fig. 12. Schematic illustration of (a) the synthesis of ZnO@NPC-Ox toward CO2 cycloaddition with epoxides. Adapted with permission from Ref. [146]. Copyright 2017, WILEY-VCH. (b) The fabrication of HPC. Adapted with permission from Ref. [147]. Copyright 2019, WILEY-VCH.
Fig. 13. Schematic illustration of the synthesis of M@CSN nanoreactor. M represents monometallic or bimetallic nanoparticles; mSiO2 = mesoporous SiO2; R-NBH4 = tetrabutylammonium borohydride; CTAC = cetyltrimethylammonium chloride; TEOS = tetraethylorthosilicate. Adapted with permission from Ref. [151]. Copyright 2017, American Chemical Society.
Fig. 14. In situ FT-IR spectra of the reaction between CO2 and epichlorohydrin catalyzed by (I-)Meim-UiO-66, whose spectrum was subtracted for clarity. Adapted with permission from Ref. [159]. Copyright 2017, Royal Society of Chemistry.
|
[1] | Guoqing An, Xiaowei Zhang, Canyang Zhang, Hongyi Gao, Siqi Liu, Geng Qin, Hui Qi, Jitti Kasemchainan, Jianwei Zhang, Ge Wang. Metal-organic-framework-based materials as green catalysts for alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 50(7): 126-174. |
[2] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[3] | Yujie Li, Yuanyuan Liu, Zeyan Wang, Peng Wang, Zhaoke Zheng, Hefeng Cheng, Ying Dai, Baibiao Huang. Enhanced photocatalytic H2O2 production over Pt(II) deposited boron containing metal-organic framework via suppressing the simultaneous decomposition [J]. Chinese Journal of Catalysis, 2023, 45(2): 132-140. |
[4] | Jianyun Zheng, Yanhong Lyu, Aibin Huang, Bernt Johannessen, Xun Cao, San Ping Jiang, Shuangyin Wang. Deciphering the synergy between electron localization and alloying for photoelectrochemical nitrogen reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 45(2): 141-151. |
[5] | Li Lin, Xiaoyang He, Shunji Xie, Ye Wang. Electrocatalytic CO2 conversion toward large-scale deployment [J]. Chinese Journal of Catalysis, 2023, 53(10): 1-7. |
[6] | Yangshen Chen, Miao Kan, Shuai Yan, Junbo Zhang, Kunhao Liu, Yaqin Yan, Anxiang Guan, Ximeng Lv, Linping Qian, Gengfeng Zheng. Electroreduction of air-level CO2 with high conversion efficiency [J]. Chinese Journal of Catalysis, 2022, 43(7): 1703-1709. |
[7] | Menghui Chen, Yongting Chen, Zhili Yang, Jin Luo, Jialin Cai, Joey Chung-Yen Jung, Jiujun Zhang, Shengli Chen, Shiming Zhang. Synergy of staggered stacking confinement and microporous defect fixation for high-density atomic FeII-N4 oxygen reduction active sites [J]. Chinese Journal of Catalysis, 2022, 43(7): 1870-1878. |
[8] | Fenglei Lyu, Wei Hua, Huirong Wu, Hao Sun, Zhao Deng, Yang Peng. Structural and interfacial engineering of well-defined metal-organic ensembles for electrocatalytic carbon dioxide reduction [J]. Chinese Journal of Catalysis, 2022, 43(6): 1417-1432. |
[9] | Jinman Yang, Xingwang Zhu, Qing Yu, Minqiang He, Wei Zhang, Zhao Mo, Junjie Yuan, Yuanbin She, Hui Xu, Huaming Li. Multidimensional In2O3/In2S3 heterojunction with lattice distortion for CO2 photoconversion [J]. Chinese Journal of Catalysis, 2022, 43(5): 1286-1294. |
[10] | Boyu Zhang, Jiafu Shi, Yang Zhao, Han Wang, Ziyi Chu, Yu Chen, Zhenhua Wu, Zhongyi Jiang. Pickering interfacial biocatalysis with enhanced diffusion processes for CO2 mineralization [J]. Chinese Journal of Catalysis, 2022, 43(4): 1184-1191. |
[11] | Junmin Huang, Jianmin Chen, Wangxi Liu, Jingwen Zhang, Junying Chen, Yingwei Li. Copper-doped zinc sulfide nanoframes with three-dimensional photocatalytic surfaces for enhanced solar driven H2 production [J]. Chinese Journal of Catalysis, 2022, 43(3): 782-792. |
[12] | Ling-Ling Zheng, Long-Shuai Zhang, Ying Chen, Lei Tian, Xun-Heng Jiang, Li-Sha Chen, Qiu-Ju Xing, Xiao-Zhen Liu, Dai-She Wu, Jian-Ping Zou. A new strategy for the fabrication of covalent organic framework-metal-organic framework hybrids via in-situ functionalization of ligands for improved hydrogen evolution reaction activity [J]. Chinese Journal of Catalysis, 2022, 43(3): 811-819. |
[13] | Bo Zhang, Yunzhen Wu, Panlong Zhai, Chen Wang, Licheng Sun, Jungang Hou. Rational design of bismuth-based catalysts for electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2022, 43(12): 3062-3088. |
[14] | Xiangkun Li, Zhaohui Li, Yan Liu, Hengjun Liu, Zhiqiang Zhao, Ying Zheng, Linyuan Chen, Wanneng Ye, Hongsen Li, Qiang Li. Transition metal catalysis in lithium-ion batteries studied by operando magnetometry [J]. Chinese Journal of Catalysis, 2022, 43(1): 158-166. |
[15] | Ximeng Lv, Menghuan Chen, Zhaolong Xie, Linping Qian, Lijuan Zhang, Gengfeng Zheng. Electrochemical conversion of C1 molecules to sustainable fuels in solid oxide electrolysis cells [J]. Chinese Journal of Catalysis, 2022, 43(1): 92-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||