Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (10): 1772-1781.DOI: 10.1016/S1872-2067(21)63811-1
• Articles • Previous Articles Next Articles
Yuanyuan Jianga, Ruru Zhoua, Huaiyuan Zhaoa, Boyong Yea, Yihua Longb, Zhengbao Wangb, Zhaoyin Houa,c()
Received:
2021-01-29
Accepted:
2021-03-12
Online:
2021-10-18
Published:
2021-06-20
Contact:
Zhaoyin Hou
About author:
First author contact:†Contributed equally to this work.
Supported by:
Yuanyuan Jiang, Ruru Zhou, Huaiyuan Zhao, Boyong Ye, Yihua Long, Zhengbao Wang, Zhaoyin Hou. A highly active and stable organic-inorganic combined solid acid for the transesterification of glycerol under mild conditions[J]. Chinese Journal of Catalysis, 2021, 42(10): 1772-1781.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63811-1
Sample | Surface area (m2/g) | PSA content a (wt%) | Bulk S content b (%) | Surface S content c (%) | [H+] content d (mmol/g-cat) | Acid density e (mmol/m2) |
---|---|---|---|---|---|---|
ZrP | 43.6 | — | — | — | 1.300 f | 0.0298 |
K-ZrP | 13.9 | — | — | — | — | — |
PSA/K-ZrP-0.2 | 6.3 | 3.1 | 0.4 | — | 0.188 | 0.0298 |
PSA/K-ZrP-1 | 3.8 | 16.2 | 2.2 | — | 0.938 | 0.247 |
PSA/K-ZrP-2 | 2.1 | 38.2 | 4.8 | 5.6 | 2.190 | 1.043 |
PSA/K-ZrP-3 | 1.7 | 45.2 | 5.3 | 5.4 | 2.594 | 1.526 |
Table 1 Properties of ZrP, K-ZrP and PSA/K-ZrP-x.
Sample | Surface area (m2/g) | PSA content a (wt%) | Bulk S content b (%) | Surface S content c (%) | [H+] content d (mmol/g-cat) | Acid density e (mmol/m2) |
---|---|---|---|---|---|---|
ZrP | 43.6 | — | — | — | 1.300 f | 0.0298 |
K-ZrP | 13.9 | — | — | — | — | — |
PSA/K-ZrP-0.2 | 6.3 | 3.1 | 0.4 | — | 0.188 | 0.0298 |
PSA/K-ZrP-1 | 3.8 | 16.2 | 2.2 | — | 0.938 | 0.247 |
PSA/K-ZrP-2 | 2.1 | 38.2 | 4.8 | 5.6 | 2.190 | 1.043 |
PSA/K-ZrP-3 | 1.7 | 45.2 | 5.3 | 5.4 | 2.594 | 1.526 |
Catalyst | Conversion (%) | Specific activity b (mg-glycerol/g-cat/h) | Product selectivity (%) | Carbon balance c | ||
---|---|---|---|---|---|---|
MAG | DAG | TAG | ||||
ZrP | 0 1.4 | 32.2 | 100 | 0 | 0 | 99.5 |
K-ZrP | 0.7 | 16.1 | 100 | 0 | 0 | 99.5 |
PSA/K-ZrP-0.2 | 44.9 | 1032.7 | 96.1 | 3.9 | 0 | 99.0 |
PSA/K-ZrP-1 | 67.9 | 1561.7 | 71.8 | 27.3 | 0.9 | 98.5 |
PSA/K-ZrP-2 | 81.3 | 1869.9 | 63.8 | 34.1 | 2.1 | 98.3 |
PSA/K-ZrP-3 | 80.9 | 1860.7 | 65.8 | 32.5 | 1.7 | 98.0 |
PSA | 85.4 | 1964.2 | 61.9 | 34.8 | 3.3 | 97.5 |
Table 2 Transesterification of glycerol with methyl acetate over PSA/K-ZrP-x a.
Catalyst | Conversion (%) | Specific activity b (mg-glycerol/g-cat/h) | Product selectivity (%) | Carbon balance c | ||
---|---|---|---|---|---|---|
MAG | DAG | TAG | ||||
ZrP | 0 1.4 | 32.2 | 100 | 0 | 0 | 99.5 |
K-ZrP | 0.7 | 16.1 | 100 | 0 | 0 | 99.5 |
PSA/K-ZrP-0.2 | 44.9 | 1032.7 | 96.1 | 3.9 | 0 | 99.0 |
PSA/K-ZrP-1 | 67.9 | 1561.7 | 71.8 | 27.3 | 0.9 | 98.5 |
PSA/K-ZrP-2 | 81.3 | 1869.9 | 63.8 | 34.1 | 2.1 | 98.3 |
PSA/K-ZrP-3 | 80.9 | 1860.7 | 65.8 | 32.5 | 1.7 | 98.0 |
PSA | 85.4 | 1964.2 | 61.9 | 34.8 | 3.3 | 97.5 |
Catalyst | Conversion (%) | Specific activity (mg-glycerol/g-cat/h) b | Product selectivity (%) | Carbon balance c | ||
---|---|---|---|---|---|---|
MAG | DAG | TAG | ||||
Amberlyst-45 | 86.6 | 1991.8 | 59.5 | 37.3 | 3.2 | 99.0 |
H3PW12O40 | 82.5 | 1897.5 | 68.9 | 28.3 | 2.8 | 97.8 |
HBEA d | 51.3 | 1179.9 | 79.1 | 19.9 | 1.0 | 99.3 |
HZSM-5 d | 1.8 | 41.4 | 100 | 0 | 0 | 99.3 |
PSA/K-ZrP-2 | 81.3 | 1869.9 | 63.8 | 34.1 | 2.1 | 98.3 |
AlCl3 | 40.1 | 922.3 | 92.0 | 7.9 | 0.1 | 98.5 |
FeCl3 | 18.2 | 418.6 | 100 | 0 | 0 | 98.5 |
Table 3 Transesterification of glycerol with methyl acetate over acid catalysts a.
Catalyst | Conversion (%) | Specific activity (mg-glycerol/g-cat/h) b | Product selectivity (%) | Carbon balance c | ||
---|---|---|---|---|---|---|
MAG | DAG | TAG | ||||
Amberlyst-45 | 86.6 | 1991.8 | 59.5 | 37.3 | 3.2 | 99.0 |
H3PW12O40 | 82.5 | 1897.5 | 68.9 | 28.3 | 2.8 | 97.8 |
HBEA d | 51.3 | 1179.9 | 79.1 | 19.9 | 1.0 | 99.3 |
HZSM-5 d | 1.8 | 41.4 | 100 | 0 | 0 | 99.3 |
PSA/K-ZrP-2 | 81.3 | 1869.9 | 63.8 | 34.1 | 2.1 | 98.3 |
AlCl3 | 40.1 | 922.3 | 92.0 | 7.9 | 0.1 | 98.5 |
FeCl3 | 18.2 | 418.6 | 100 | 0 | 0 | 98.5 |
Fig. 7. Recycle usage of PSA/K-ZrP-2. Reaction conditions: 10 mmol glycerol, 100 mmol methyl acetate, initial 0.1 g catalyst, 100 °C, 0.5 h, 1 MPa N2.
Fig. 8. Transesterification of glycerol at varied temperature over PSA/K-ZrP-2. Reaction conditions: 10 mmol glycerol, 100 mmol methyl acetate, 0.1 g catalyst, 4 h, 1 MPa N2.
Fig. 9. Transesterification of glycerol with different molar ratios of methyl acetate/glycerol in feed. Reaction conditions: 10 mmol glycerol, 0.1 g catalyst, 100 °C, 4 h, 1 MPa N2.
Fig. 10. Transesterification of glycerol with methyl acetate with different dosages of PSA/K-ZrP-2. Reaction conditions: 10 mmol glycerol, 100 mmol methyl acetate, 100 °C, 4 h, 1 MPa N2.
Fig. 11. Time course of transesterification of glycerol with methyl acetate. Reaction conditions: 10 mmol glycerol, 100 mmol methyl acetate, 0.1 g catalyst, 100 °C, 1 MPa N2.
Entry | Esters | Temperature, time | Conv. (%) | Product selectivity (%) | ||
---|---|---|---|---|---|---|
MG | DG | TG | ||||
1 | ![]() | 100 °C, 4 h | 75.6 | 88.5 | 10.5 | 1.0 |
2 | ![]() | 100 °C, 4 h | 83.3 | 54.0 | 43.0 | 3.0 |
3 | ![]() | 100 °C, 4 h | 90.2 | 27.4 | 54.9 | 17.6 |
4 | ![]() | 120 °C, 4 h | 80.5 | 61.3 | 36.7 | 2.0 |
5 | ![]() | 120 °C, 6 h | 81.9 | 54.5 | 42.3 | 3.2 |
Table 4 Transesterification of glycerol with different esters over PSA/K-ZrP-2 a.
Entry | Esters | Temperature, time | Conv. (%) | Product selectivity (%) | ||
---|---|---|---|---|---|---|
MG | DG | TG | ||||
1 | ![]() | 100 °C, 4 h | 75.6 | 88.5 | 10.5 | 1.0 |
2 | ![]() | 100 °C, 4 h | 83.3 | 54.0 | 43.0 | 3.0 |
3 | ![]() | 100 °C, 4 h | 90.2 | 27.4 | 54.9 | 17.6 |
4 | ![]() | 120 °C, 4 h | 80.5 | 61.3 | 36.7 | 2.0 |
5 | ![]() | 120 °C, 6 h | 81.9 | 54.5 | 42.3 | 3.2 |
|
[1] | Kai Shi, Di Si, Xue Teng, Lisong Chen, Jianlin Shi. Enhanced electrocatalytic glycerol oxidation on CuCoN0.6/CP at significantly reduced potentials [J]. Chinese Journal of Catalysis, 2023, 53(10): 143-152. |
[2] | Jianxiang Wu, Xuejing Yang, Ming Gong. Recent advances in glycerol valorization via electrooxidation: Catalyst, mechanism and device [J]. Chinese Journal of Catalysis, 2022, 43(12): 2966-2986. |
[3] | Steffen Cychy, Sebastian Lechler, Zijian Huang, Michael Braun, Ann Cathrin Brix, Peter Blümler, Corina Andronescu, Friederike Schmid, Wolfgang Schuhmann, Martin Muhler. Optimizing the nickel boride layer thickness in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in glycerol oxidation [J]. Chinese Journal of Catalysis, 2021, 42(12): 2206-2215. |
[4] | Jia Wang, Man Yang, Aiqin Wang. Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts [J]. Chinese Journal of Catalysis, 2020, 41(9): 1311-1319. |
[5] | Nian Lei, Zhili Miao, Fei Liu, Hua Wang, Xiaoli Pan, Aiqin Wang, Tao Zhang. Understanding the deactivation behavior of Pt/WO3/Al2O3 catalyst in the glycerol hydrogenolysis reaction [J]. Chinese Journal of Catalysis, 2020, 41(8): 1261-1267. |
[6] | Lihua Yang, Tianqu He, Chujun Lai, Ping Chen, Zhaoyin Hou. Selective oxidation of glycerol with oxygen in base-free solution over N-doped-carbon-supported Sb@PtSb2 hybrid [J]. Chinese Journal of Catalysis, 2020, 41(3): 494-502. |
[7] | Lihua Yang, Xuewen Li, Ping Chen, Zhaoyin Hou. Selective oxidation of glycerol in a base-free aqueous solution: A short review [J]. Chinese Journal of Catalysis, 2019, 40(7): 1020-1034. |
[8] | Kang Kong, Difan Li, Wenbao Ma, Qingqing Zhou, Guoping Tang, Zhenshan Hou. Aluminum(III) triflate-catalyzed selective oxidation of glycerol to formic acid with hydrogen peroxide [J]. Chinese Journal of Catalysis, 2019, 40(4): 534-542. |
[9] | Chaojun Yang, Fan Zhang, Nian Lei, Man Yang, Fei Liu, Zhili Miao, Yongnan Sun, Xiaochen Zhao, Aiqin Wang. Understanding the promotional effect of Au on Pt/WO3 in hydrogenolysis of glycerol to 1,3-propanediol [J]. Chinese Journal of Catalysis, 2018, 39(8): 1366-1372. |
[10] | Man Yang, Xiaochen Zhao, Yujing Ren, Jia Wang, Nian Lei, Aiqin Wang, Tao Zhang. Pt/Nb-WOx for the chemoselective hydrogenolysis of glycerol to 1,3-propanediol: Nb dopant pacifying the over-reduction of WOx supports [J]. Chinese Journal of Catalysis, 2018, 39(6): 1027-1037. |
[11] | Chuang Li, Bo He, Yu Ling, Chi-Wing Tsang, Changhai Liang. Glycerol hydrogenolysis to n-propanol over Zr-Al composite oxide-supported Pt catalysts [J]. Chinese Journal of Catalysis, 2018, 39(6): 1121-1128. |
[12] | Justina Gaidukevič, Jurgis Barkauskas, Anna Malaika, Paulina Rechnia-Gorący, Aleksandra Możdżyńska, Vitalija Jasulaitienė, Mieczysław Kozłowski. Modified graphene-based materials as effective catalysts for transesterification of rapeseed oil to biodiesel fuel [J]. Chinese Journal of Catalysis, 2018, 39(10): 1633-1645. |
[13] | Hongyi Du, Si Chen, Hengwei Wang, Junling Lu. Acidic alumina overcoating on platinum nanoparticles:Close metal-acid proximity enhances bifunctionality for glycerol hydrogenolysis [J]. Chinese Journal of Catalysis, 2017, 38(7): 1237-1244. |
[14] | Weihua Yu, Pengpeng Wang, Chunhui Zhou, Hanbin Zhao, Dongshen Tong, Hao Zhang, Huimin Yang, Shengfu Ji, Hao Wang. Acid-activated and WOx-loaded montmorillonite catalysts and their catalytic behaviors in glycerol dehydration [J]. Chinese Journal of Catalysis, 2017, 38(6): 1087-1100. |
[15] | Chen Zhang, Tao Wang, Yunjie Ding. One-step synthesis of pyruvic acid from glycerol oxidation over Pb promoted Pt/activated carbon catalysts [J]. Chinese Journal of Catalysis, 2017, 38(5): 928-938. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||