Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (5): 1204-1215.DOI: 10.1016/S1872-2067(21)64028-7
• Reviews • Previous Articles Next Articles
Haijiao Lu, Xianlong Li, Sabiha Akter Monny, Zhiliang Wang(), Lianzhou Wang(
)
Received:
2021-12-15
Accepted:
2022-02-05
Online:
2022-05-18
Published:
2022-03-23
Contact:
Zhiliang Wang, Lianzhou Wang
Haijiao Lu, Xianlong Li, Sabiha Akter Monny, Zhiliang Wang, Lianzhou Wang. Photoelectrocatalytic hydrogen peroxide production based on transition-metal-oxide semiconductors[J]. Chinese Journal of Catalysis, 2022, 43(5): 1204-1215.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)64028-7
Fig. 4. Activity volcano plots. It is based on calculated limiting potentials (UL) as a function of calculated adsorption energies of OH* (ΔGOH*) for the 2-electron oxidation of water to hydrogen peroxide evolution (black) and the 4-electron oxidation to oxygen evolution (blue). The corresponding equilibrium potentials for each reaction have been shown in dashed lines. Reprinted with permission from Ref. [43]. Copyright 2017 The Authors, licensed under Creative Commons CC BY license (https://creativecommons.org/licenses/by/4.0/).
Fig. 5. Schematic illustration of different BiVO4 based PEC systems for H2O2 generation: (a) WO3/BiVO4/MeOx photoanode (b) Oxidative H2O2 generation on photoanodes (WO3/BiVO4/MeOx) at an electric charge of 0.9 C. Reprinted with permission from Ref. [52]. Copyright 2017, Royal Society of Chemistry, licensed under Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).
Fig. 7. (a) Schematic illustration of modified BiVO4 photoanodes with phosphate on surface and Mo doping. Reprinted with permission from Ref. [37]. Copyright 2020, Royal Society of Chemistry. (b) Schematic illustration FeO(OH)/BiVO4 photocathode. Reprinted with permission from Ref. [20]. Copyright 2016, American Chemical Society.
Fig. 8. Schematic illustration of the TiO2-based unbiased solar PEC system which integrated indirect photoreduction of O2 to H2O2 and photooxidation of H2S to S. Reprinted with permission from Ref. [61]. Copyright 2014, Royal Society of Chemistry.
Fig. 9. (a) Schematic illustration of the water oxidation reaction pathway for PEC H2O2 production on Co3O4/TiO2 photoanode; (b) Faradaic efficiency of O2 and H2 for pristine TiO2 NRs and 0.25% Co3O4/TiO2 samples. Reprinted with permission from Ref. [62]. Copyright 2018, Royal Society of Chemistry.
Fig. 10. Schematic illustration of two plausible mechanisms of water oxidation to H2O2. Reprinted with permission from Ref. [63]. Copyright 2015, Elsevier.
Fig. 11. (a) Schematic illustration of PEC synthesis of pure H2O2 aqueous solution using a PEC system with SPE in the absence of applied electrical bias. (b) H2O2 concentration and FE obtained by various electrode configurations at Ecell = 0.0 V for 1 h. Reprinted with permission from Ref. [64]. Copyright 2021, Royal Society of Chemistry.
Fig. 12. (a) Schematic illustration of fabrication process of biphase (1T-2H)-MoSe2/TiO2 NRAs. (b) Mechanism of the core-shell (1T-2H)-MoSe2/TiO2 NRAs S-scheme heterojunction system. Reprinted with permission from Ref. [66]. Copyright 2021, Elsevier.
Fig. 13. (a) Schematic illustration of Photocatalytic production of H2O2 from water and O2 using m-WO3/FTO photoanode and CoII(Ch)/CP cathode in water or seawater. Reprinted with permission from Ref. [14]. Copyright 2016, Springer Nature, licensed under Creative Commons Attribution 4.0 International License (http://creativecommons.org/ licenses/by/4.0/). (b) The highly oriented WO3 NNs epitaxially grown on the top of WO3 NHs. Reprinted with permission from Ref. [69]. Copyright 2018, Royal Society of Chemistry.
Fig. 14. Illustration of the working principle of dye sensitized NiO PEC systems for H2O2 production by direct O2 reduction (a) and by using AQ redox mediators (b, top), and the corresponding schematic representation (b, bottom). Reprinted with permission from Ref. [75]. Copyright 2020, Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim.
(Photo)anode | (Photo)cathode | Electrolyte | H2O2 source reaction | Light source | H2O2 production performance a | Ref. |
---|---|---|---|---|---|---|
Al2O3/BiVO4/WO3 (6 cm2) | Pt | 2.0 mol/L KHCO3 | WOR | AM 1.5G | FE ~100% in 5 min | [53] |
Gd-doped BiVO4 (3 cm2) | C | 2.0 mol/L KHCO3 | WOR | AM 1.5G | J = 5.2 mA cm-2 FE 99.5% at 2.6 V vs. RHE | [54] |
Phosphate treated Mo-doped BiVO4 | AQ-CNT/C | 1.0 mol/L NaHCO3 | WOR, ORR | AM 1.5G | 0.66 μmol min-1 cm-2 at 1.0 V vs. RHE 0.16 μmol min-1 cm-2 under no bias | [37] |
SnO2-x overlayer coated BiVO4 (0.01 cm2) | Pt | 1.0 mol/L NaHCO3 | WOR | AM 1.5G | 0.825 μmol min-1 cm-2 at 1.23 V vs. RHE solar-to-H2O2 efficiency ~5.6% | [55] |
FeO(OH)/BiVO4 (2.5 cm2) | CoII(Ch)|carbon paper (3.0 cm2) | HClO4 (pH 1.3) solution containing 0.1 mol/L NaClO4 | ORR | AM 1.5G | solar-to-H2O2 efficiency 6.6% under 0.05 sun | [20] |
TiO2/Ti/n+p-Si (0.5 cm2) | carbon | saturated AQ in 0.5 mol/L H2SO4 (anolyte) 0.1 mol/L KI in 0.5 mol/L H2SO4 (catholyte) | ORR | AM 1.5G | solar-to-chemical conversion efficiency 1.1% | [61] |
Co3O4/TiO2 (1 cm2) | Pt | 0.5 mol/L KHCO3 | WOR | AM 1.5G | FE ~26.76 ± 1.49% at 1.23 V vs. RHE | [62] |
Ge-oxyl complex/TiO2 (0.8 cm2) | Pt | 0.1 mol/L Et4N+BF4- aqueous solution | WOR | λ = 550 nm | FE 92%, TON 9.0 | [63] |
RuOx/TiO2 NRs (1 cm2) | AQ/graphite | 1 mol/L H2SO4 (anolyte) 1mol/L KOH (catholyte) | ORR | AM 1.5G | ∼80 mmol/L H2O2 (electrolyte-free) and FE ∼90% under no external bias | [64] |
(1T-2H)MoSe2 /TiO2 NAs (1.5 cm2) | Pt | ethanol solution (5%) | ORR | λ = 254 nm | 57 μmol L-1 h-1 | [66] |
Pt | CuTPP-COOH/ TiO2 NTs (1.54 cm2) | 0.1 mol/L Na2SO4 | ORR | λ = 395 nm | 2.2 μg mg-1 h-1 at -0.05 V vs. RHE 13.4 μg mg-1 h-1 at -0.30 V vs. RHE | [65] |
mesoporous WO3 (2.5 cm2) | cobalt chlorin complex supported on a glassy carbon substrate (3.0 cm2) | pH 1.3 seawater | WOR | AM 1.5G | concentration 48 mmol/L in 24 h | [14] |
WO3 NNs/WO3 NHs/ Mo-doped BiVO4 (2 cm2) | Pt | 2.0 mol/L KHCO3 | WOR | AM 1.5G | J = 5.6 mA cm-2 at 0.8 V vs. RHE | [69] |
Co3O4/WO3 (1 cm2) | Pt | 0.5 mol/L KHCO3 | WOR | AM 1.5G | FE ~12% J = ~0.83 mA cm-2 at 1.2 V vs. RHE | [62] |
Pt | Por sensitized NiO (0.6 cm2) | pH 6 3-(N-morpholino) propanesulfonic acid (MOPS) buffer | ORR | AM 1.5G; 405 nm LED | J = 80 μA cm-2 at 0.55 V vs. RHE J = 300 μA cm-2 at 0.55 V vs. RHE | [73] |
Coumarin 343 sensitized NiO (0.6 cm2) | J = 130 μA cm-2 at 0.55 V vs. RHE J = 400 μA cm-2 at 0.55 V vs. RHE | |||||
Pt | BH4 sensitized NiO (0.36 cm2) | 20 mmol/L MOPS pH 6 buffer, 0.2 mol/L KCl aqueous solution | ORR | AM 1.5G | J = 600 μA cm-2 at 0.55 V vs. RHE | [74] |
Pt | BH4 sensitized NiO | AQ-2-sulfonic acid sodium salt saturated 0.5 mol/L H2SO4 | ORR | AM 1.5G | J = 130 μA cm-2 at 0.55 V vs. RHE | [75] |
Pt | CoTiO3 (1 cm2) | pH 3.9 | ORR | λ = 400 nm | J = 1 μA cm-2 at 0.7-1.4 V vs. RHE | [77] |
NiTiO3 (1 cm2) | ORR, WOR | λ = 400 nm or 565 nm | J = 80 μA cm-2 at 0.55 V vs. RHE (λ = 400 nm) J = 10 μA cm-2 at 0.55 V vs. RHE (λ = 565 nm) | |||
Pt | Gd-doped CuBi2O4/CuO (1 cm2) | 0.1 mol/L KOH | ORR | AM 1.5G | 1.3 mmol/L H2O2 in 30 min at 0.65 V vs. RHE | [80] |
Table 1 Recent studies on TMO semiconductor based PEC H2O2 production systems.
(Photo)anode | (Photo)cathode | Electrolyte | H2O2 source reaction | Light source | H2O2 production performance a | Ref. |
---|---|---|---|---|---|---|
Al2O3/BiVO4/WO3 (6 cm2) | Pt | 2.0 mol/L KHCO3 | WOR | AM 1.5G | FE ~100% in 5 min | [53] |
Gd-doped BiVO4 (3 cm2) | C | 2.0 mol/L KHCO3 | WOR | AM 1.5G | J = 5.2 mA cm-2 FE 99.5% at 2.6 V vs. RHE | [54] |
Phosphate treated Mo-doped BiVO4 | AQ-CNT/C | 1.0 mol/L NaHCO3 | WOR, ORR | AM 1.5G | 0.66 μmol min-1 cm-2 at 1.0 V vs. RHE 0.16 μmol min-1 cm-2 under no bias | [37] |
SnO2-x overlayer coated BiVO4 (0.01 cm2) | Pt | 1.0 mol/L NaHCO3 | WOR | AM 1.5G | 0.825 μmol min-1 cm-2 at 1.23 V vs. RHE solar-to-H2O2 efficiency ~5.6% | [55] |
FeO(OH)/BiVO4 (2.5 cm2) | CoII(Ch)|carbon paper (3.0 cm2) | HClO4 (pH 1.3) solution containing 0.1 mol/L NaClO4 | ORR | AM 1.5G | solar-to-H2O2 efficiency 6.6% under 0.05 sun | [20] |
TiO2/Ti/n+p-Si (0.5 cm2) | carbon | saturated AQ in 0.5 mol/L H2SO4 (anolyte) 0.1 mol/L KI in 0.5 mol/L H2SO4 (catholyte) | ORR | AM 1.5G | solar-to-chemical conversion efficiency 1.1% | [61] |
Co3O4/TiO2 (1 cm2) | Pt | 0.5 mol/L KHCO3 | WOR | AM 1.5G | FE ~26.76 ± 1.49% at 1.23 V vs. RHE | [62] |
Ge-oxyl complex/TiO2 (0.8 cm2) | Pt | 0.1 mol/L Et4N+BF4- aqueous solution | WOR | λ = 550 nm | FE 92%, TON 9.0 | [63] |
RuOx/TiO2 NRs (1 cm2) | AQ/graphite | 1 mol/L H2SO4 (anolyte) 1mol/L KOH (catholyte) | ORR | AM 1.5G | ∼80 mmol/L H2O2 (electrolyte-free) and FE ∼90% under no external bias | [64] |
(1T-2H)MoSe2 /TiO2 NAs (1.5 cm2) | Pt | ethanol solution (5%) | ORR | λ = 254 nm | 57 μmol L-1 h-1 | [66] |
Pt | CuTPP-COOH/ TiO2 NTs (1.54 cm2) | 0.1 mol/L Na2SO4 | ORR | λ = 395 nm | 2.2 μg mg-1 h-1 at -0.05 V vs. RHE 13.4 μg mg-1 h-1 at -0.30 V vs. RHE | [65] |
mesoporous WO3 (2.5 cm2) | cobalt chlorin complex supported on a glassy carbon substrate (3.0 cm2) | pH 1.3 seawater | WOR | AM 1.5G | concentration 48 mmol/L in 24 h | [14] |
WO3 NNs/WO3 NHs/ Mo-doped BiVO4 (2 cm2) | Pt | 2.0 mol/L KHCO3 | WOR | AM 1.5G | J = 5.6 mA cm-2 at 0.8 V vs. RHE | [69] |
Co3O4/WO3 (1 cm2) | Pt | 0.5 mol/L KHCO3 | WOR | AM 1.5G | FE ~12% J = ~0.83 mA cm-2 at 1.2 V vs. RHE | [62] |
Pt | Por sensitized NiO (0.6 cm2) | pH 6 3-(N-morpholino) propanesulfonic acid (MOPS) buffer | ORR | AM 1.5G; 405 nm LED | J = 80 μA cm-2 at 0.55 V vs. RHE J = 300 μA cm-2 at 0.55 V vs. RHE | [73] |
Coumarin 343 sensitized NiO (0.6 cm2) | J = 130 μA cm-2 at 0.55 V vs. RHE J = 400 μA cm-2 at 0.55 V vs. RHE | |||||
Pt | BH4 sensitized NiO (0.36 cm2) | 20 mmol/L MOPS pH 6 buffer, 0.2 mol/L KCl aqueous solution | ORR | AM 1.5G | J = 600 μA cm-2 at 0.55 V vs. RHE | [74] |
Pt | BH4 sensitized NiO | AQ-2-sulfonic acid sodium salt saturated 0.5 mol/L H2SO4 | ORR | AM 1.5G | J = 130 μA cm-2 at 0.55 V vs. RHE | [75] |
Pt | CoTiO3 (1 cm2) | pH 3.9 | ORR | λ = 400 nm | J = 1 μA cm-2 at 0.7-1.4 V vs. RHE | [77] |
NiTiO3 (1 cm2) | ORR, WOR | λ = 400 nm or 565 nm | J = 80 μA cm-2 at 0.55 V vs. RHE (λ = 400 nm) J = 10 μA cm-2 at 0.55 V vs. RHE (λ = 565 nm) | |||
Pt | Gd-doped CuBi2O4/CuO (1 cm2) | 0.1 mol/L KOH | ORR | AM 1.5G | 1.3 mmol/L H2O2 in 30 min at 0.65 V vs. RHE | [80] |
Fig. 16. Schematic illustration of the design of light-driven fuel cell with spontaneous H2O2 generation. The light bulb illustrates the simultaneous generated electricity that flows through the external circuit. Reprinted with permission from Ref. [32]. Copyright 2018, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
|
[1] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[2] | Mingjia Lu, Lecheng Liang, Binbin Feng, Yiwen Chang, Zhihong Huang, Huiyu Song, Li Du, Shijun Liao, Zhiming Cui. Ultrafast carbothermal shock strategy enabled highly graphitic porous carbon supports for fuel cells [J]. Chinese Journal of Catalysis, 2023, 52(9): 228-238. |
[3] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[4] | Yan Wei, Ruizhi Duan, Qiaolan Zhang, Youzhi Cao, Jinyuan Wang, Bing Wang, Wenrui Wan, Chunyan Liu, Jiazang Chen, Hong Gao, Huanwang Jing. Photoelectrocatalytic reduction of CO2 catalyzed by TiO2/TiN nanotube heterojunction: Nitrogen assisted active hydrogen mechanism [J]. Chinese Journal of Catalysis, 2023, 47(4): 243-253. |
[5] | Xuan Liu, Jiashun Liang, Qing Li. Design principle and synthetic approach of intermetallic Pt-M alloy oxygen reduction catalysts for fuel cells [J]. Chinese Journal of Catalysis, 2023, 45(2): 17-26. |
[6] | Feng Li, Xiaolong Tang, Zhuofeng Hu, Xiangming Li, Fang Li, Yu Xie, Yanbin Jiang, Changlin Yu. Boosting the hydrogen peroxide production over In2S3 crystals under visible light illumination by gallium ions doping and sulfur vacancies modulation [J]. Chinese Journal of Catalysis, 2023, 55(12): 253-264. |
[7] | Yingzhen Zhang, Jianying Huang, Yuekun Lai. Recent advances of ammoxidation in clean energy exploitation and sewage purification: A mini review [J]. Chinese Journal of Catalysis, 2023, 54(11): 161-177. |
[8] | You Wu, Yi Yang, Miaoli Gu, Chuanbiao Bie, Haiyan Tan, Bei Cheng, Jingsan Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation [J]. Chinese Journal of Catalysis, 2023, 53(10): 123-133. |
[9] | Haolin Zhan, Lifei Ji, Shuohui Cao, Ye Feng, Yanxia Jiang, Yuqing Huang, Shigang Sun, Zhong Chen. In situ monitoring multi-carbon alcohol oxidation by combined electrochemistry with spatially selective NMR spectroscopy [J]. Chinese Journal of Catalysis, 2023, 53(10): 171-179. |
[10] | Shunta Nishioka, Kengo Shibata, Yugo Miseki, Kazuhiro Sayama, Kazuhiko Maeda. Visible-light-driven nonsacrificial hydrogen evolution by modified carbon nitride photocatalysts [J]. Chinese Journal of Catalysis, 2022, 43(9): 2316-2320. |
[11] | Chun-Yu Qiu, Li-yang Wan, Yu-Cheng Wang, Muhammad Rauf, Yu-Hao Hong, Jia-yin Yuan, Zhi-You Zhou, Shi-Gang Sun. Revealing the concentration of hydrogen peroxide in fuel cell catalyst layers by an in-operando approach [J]. Chinese Journal of Catalysis, 2022, 43(7): 1918-1926. |
[12] | Lili Zhang, Suyu Jiang, Wei Ma, Zhen Zhou. Oxygen reduction reaction on Pt-based electrocatalysts: Four-electron vs. two-electron pathway [J]. Chinese Journal of Catalysis, 2022, 43(6): 1433-1443. |
[13] | Jingsen Bai, Liting Yang, Zhao Jin, Junjie Ge, Wei Xing. Advanced Pt-based intermetallic nanocrystals for the oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(6): 1444-1458. |
[14] | Huiting Niu, Chenfeng Xia, Lei Huang, Shahid Zaman, Thandavarayan Maiyalagan, Wei Guo, Bo You, Bao Yu Xia. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis [J]. Chinese Journal of Catalysis, 2022, 43(6): 1459-1472. |
[15] | Zixun Yu, Chang Liu, Yeyu Deng, Mohan Li, Fangxin She, Leo Lai, Yuan Chen, Li Wei. Interfacial engineering of heterogeneous molecular electrocatalysts using ionic liquids towards efficient hydrogen peroxide production [J]. Chinese Journal of Catalysis, 2022, 43(5): 1238-1246. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||