Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (10): 2637-2651.DOI: 10.1016/S1872-2067(21)64038-X
• Articles • Previous Articles Next Articles
Fahim A. Qaraaha, Samah A. Mahyoubb, Abdo Hezamc, Amjad Qaraahd, Qasem A. Drmoshe, Guangli Xiua,*()
Received:
2022-01-28
Accepted:
2022-02-15
Online:
2022-10-18
Published:
2022-09-30
Contact:
Guangli Xiu
Supported by:
Fahim A. Qaraah, Samah A. Mahyoub, Abdo Hezam, Amjad Qaraah, Qasem A. Drmosh, Guangli Xiu. Construction of 3D flowers-like O-doped g-C3N4-[N-doped Nb2O5/C] heterostructure with direct S-scheme charge transport and highly improved visible-light-driven photocatalytic efficiency[J]. Chinese Journal of Catalysis, 2022, 43(10): 2637-2651.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)64038-X
Fig. 2. SEM images of OCN nanosheet (a), N-NBO/C nanoflowers (b), and representative and magnified SEM images of the S-scheme 4OCN-[N-NBO/C] heterostructures (c,d). TEM images of as-prepared OCN (e), N-NBO/C (f) and 4OCN-[N-NBO/C] (g). Parallel TEM-EDX mapping images of C (h), Nb (i), O (j), and N (k) of the 4OCN-[N-NBO/C] heterostructures, and HRTEM image of the S-scheme 4OCN-[N-NBO/C] heterostructures (l).
Fig. 3. (a) N2 adsorption-desorption isotherms of the OCN, N-NBO/C, 1OCN-[N-NBO/C], 4OCN-[N-NBO/C], 8OCN-[N-NBO/C] (a), and the related pore size distribution curves (b).
Fig. 4. (a) UV-vis diffused reflectance of Pure CN, OCN, Pure Nb2O5, N-NBO/C, and OCN-[N-NBO/C ] composites. (b) Tauc plots of Pure CN, OCN, Pure Nb2O5, N-NBO/C. (c,d) MS plots for N-NBO/C and OCN.
Fig. 6. The change in concentration of RhB vs. illumination time over OCN, N-NBO/C, and xOCN-[N-NBO/C] composites (a), the kinetic curves of RhB degradation with numerous photocatalysts under visible light illumination as a pseudo-first-order reaction (b,c). (d) Cycling experiments of photodegradation RhB over OCN-[N-NBO/C]. XRD (e) and FTIR (f) of OCN-[N-NBO/C] before and after photocatalysis.
Photocatalyst | Morphology | Heterojunction type | RhB Conc. (mg/L) | Catalyst Conc. (mg/L) | Visible light source | k (min-1) | Time (min) | Ref. |
---|---|---|---|---|---|---|---|---|
g-C3N4/Nb2O5 | nanofibers | type-II | 10 | 500 | 300 W XL | 0.0363 | 120 | [ |
g-C3N4/Nb2O5 | nanoparticles | type-II | 10 | 500 | 15 W | 0.0202 | 90 | [ |
g-C3N4/Nb2O5/rGA | nanocomposites | heterojunction | 20 | 300 | 300W XL | — | 100 | [ |
CeO2/NaNbO3 | — | heterojunction | 10 | 400 | 300 W Hg lamp | 0.073 | 30 | [ |
mpg-C3N4/Bi2WO6 | — | — | 50 | 500 | 300 W XL | 0.0724 | 60 | [ |
g-C3N4/TiO2/CuO | nanocomposites | S-scheme | 50 | 500 | 500 W XL | 0.00916 | 120 | [ |
BiOBr/g-C3N4 | — | S-scheme | 10 | 300 | 300W XL | 0.01274 | 30 | [ |
MoO3/Bi2O4 | — | Z-scheme | 10 | 500 | 100 W LED | — | 40 | [ |
TiO2/WS2 | microspheres | heterojunction | 20 | 200 | 300W XL | 0.0371 | 90 | [ |
g-C3N4@C-TiO2 | microstructures | Z-scheme | 10 | 1000 | 350W XL | 0.036 | 90 | [ |
OCN-[N-NBO/C] | nanoflowers | S-scheme | 40 | 100 | 300 W XL | 0.1477 | 30 | Reporting |
Table 1 Summarizes the photodegradation performance of RhB under visible light by using various heterojunction photocatalysts.
Photocatalyst | Morphology | Heterojunction type | RhB Conc. (mg/L) | Catalyst Conc. (mg/L) | Visible light source | k (min-1) | Time (min) | Ref. |
---|---|---|---|---|---|---|---|---|
g-C3N4/Nb2O5 | nanofibers | type-II | 10 | 500 | 300 W XL | 0.0363 | 120 | [ |
g-C3N4/Nb2O5 | nanoparticles | type-II | 10 | 500 | 15 W | 0.0202 | 90 | [ |
g-C3N4/Nb2O5/rGA | nanocomposites | heterojunction | 20 | 300 | 300W XL | — | 100 | [ |
CeO2/NaNbO3 | — | heterojunction | 10 | 400 | 300 W Hg lamp | 0.073 | 30 | [ |
mpg-C3N4/Bi2WO6 | — | — | 50 | 500 | 300 W XL | 0.0724 | 60 | [ |
g-C3N4/TiO2/CuO | nanocomposites | S-scheme | 50 | 500 | 500 W XL | 0.00916 | 120 | [ |
BiOBr/g-C3N4 | — | S-scheme | 10 | 300 | 300W XL | 0.01274 | 30 | [ |
MoO3/Bi2O4 | — | Z-scheme | 10 | 500 | 100 W LED | — | 40 | [ |
TiO2/WS2 | microspheres | heterojunction | 20 | 200 | 300W XL | 0.0371 | 90 | [ |
g-C3N4@C-TiO2 | microstructures | Z-scheme | 10 | 1000 | 350W XL | 0.036 | 90 | [ |
OCN-[N-NBO/C] | nanoflowers | S-scheme | 40 | 100 | 300 W XL | 0.1477 | 30 | Reporting |
Fig. 7. (a) RhB degradation at different pH values. (b) RhB adsorption at different pH levels. (c) Different catalytic dosages over 4OCN-[N-NBO/C]. (d) RhB degradation at different concentrations.
Fig. 8. Photocurrent transient curves (a) and EIS (b) of OCN, N-NBO/C, and 4OCN-[N-NBO/C]; PL spectra (c), time-resolved fluorescence spectra (d), and photocatalytic degradation (e) of RhB by 4OCN-[N-NBO/C] under varied trapping experiment circumstances. (f) Schematic diagrams of conventional S-scheme heterojunction.
Fig. 9. EPR spectra of DMPO-•OH adducts (in water solution) (a) and DMPO-•O2- adducts (in methanol solution) (b) over N-NBO/C, OCN, and 4OCN-[N-NBO/C] under irradiation for 3 min. (c) Schematic elucidation of the S-scheme transfer mechanism between OCN and N-NBO/C: (i) before contact, (ii) after contact, and (iii) after contact under illumination.
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[3] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[4] | Houwei He, Zhongliao Wang, Kai Dai, Suwen Li, Jinfeng Zhang. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 267-278. |
[5] | Ning Li, Xueyun Gao, Junhui Su, Yangqin Gao, Lei Ge. Metallic WO2-decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 161-170. |
[6] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. Synergy between single atoms and nanoclusters of Pd/g-C3N4 catalysts for efficient base-free CO2 hydro-genation to formic acid [J]. Chinese Journal of Catalysis, 2023, 47(4): 214-221. |
[7] | Qian Li, Qijun Tang, Peiyao Xiong, Dongzhi Chen, Jianmeng Chen, Zhongbiao Wu, Haiqiang Wang. Effect of palladium chemical states on CO2 photocatalytic reduction over g-C3N4: Distinct role of single-atomic state in boosting CH4 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 177-190. |
[8] | Han Li, Shanren Tao, Sijie Wan, Guogen Qiu, Qing Long, Jiaguo Yu, Shaowen Cao. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 167-176. |
[9] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
[10] | You Wu, Yi Yang, Miaoli Gu, Chuanbiao Bie, Haiyan Tan, Bei Cheng, Jingsan Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation [J]. Chinese Journal of Catalysis, 2023, 53(10): 123-133. |
[11] | Qing-Wen Gui, Fan Teng, Peng Yu, Yi-Fan Wu, Zhi-Bin Nong, Long-Xi Yang, Xiang Chen, Tian-Bao Yang, Wei-Min He. Visible light-induced Z-scheme V2O5/g-C3N4 heterojunction catalyzed cascade reaction of unactivated alkenes [J]. Chinese Journal of Catalysis, 2023, 44(1): 111-116. |
[12] | Bo Lin, Mengyang Xia, Baorong Xu, Ben Chong, Zihao Chen, Guidong Yang. Bio-inspired nanostructured g-C3N4-based photocatalysts: A comprehensive review [J]. Chinese Journal of Catalysis, 2022, 43(8): 2141-2172. |
[13] | Zhongliao Wang, Bei Cheng, Liuyang Zhang, Jiaguo Yu, Youji Li, S. Wageh, Ahmed A. Al-Ghamdi. S-Scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1657-1666. |
[14] | Kaiyi Su, Chaofeng Zhang, Yehong Wang, Jian Zhang, Qiang Guo, Zhuyan Gao, Feng Wang. Unveiling the highly disordered NbO6 units as electron-transfer sites in Nb2O5 photocatalysis with N-hydroxyphthalimide under visible light irradiation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1894-1905. |
[15] | Zhenlong Zhao, Ji Bian, Lina Zhao, Hongjun Wu, Shuai Xu, Lei Sun, Zhijun Li, Ziqing Zhang, Liqiang Jing. Construction of 2D Zn-MOF/BiVO4 S-scheme heterojunction for efficient photocatalytic CO2 conversion under visible light irradiation [J]. Chinese Journal of Catalysis, 2022, 43(5): 1331-1340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||