Chinese Journal of Catalysis ›› 2023, Vol. 52: 99-126.DOI: 10.1016/S1872-2067(23)64512-7
• Reviews • Previous Articles Next Articles
Abhishek R. Varmaa, Bhushan S. Shriramea, Sunil K. Maitya,*(), Deepti Agrawalb, Naglis Malysc, Leonardo Rios-Solisd, Gopalakrishnan Kumare, Vinod Kumarf,g,h,*()
Received:
2023-07-17
Accepted:
2023-08-28
Online:
2023-09-18
Published:
2023-09-25
Contact:
*E-mail: About author:
Dr. Sunil K. Maity is currently working as a Professor in the Department of Chemical Engineering, Indian Institute of Technology Hyderabad, India. He also served about two and half years as an Assistant Professor at the National Institute of Technology Rourkela, India, from 2007 to 2010. Prof. Maity received his B.Tech. degree in Chemical Engineering from University College of Science and Technology, University of Calcutta, India in 1999, followed by M.Tech. degree in 2002 and Ph.D. in 2007 from the Department of Chemical Engineering, Indian Institute of Technology Kharagpur. His research interests mainly focus on biorefinery for biofuels and renewable chemicals, heterogeneous catalysis and chemical reaction engineering, and techno-economic analysis using Aspen Plus and pinch technology. He published three edited books, ten book chapters, forty peer-reviewed journal articles, and has organized several national and international conferences.Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals[J]. Chinese Journal of Catalysis, 2023, 52: 99-126.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64512-7
Butanediol | Structure | Molar mass (g/mol) | Boiling point (°C) | Melting point (°C) | Density (g/cm3) | Vapor pressure (Pa) | Heat capacity (J/(mol·°C )) |
---|---|---|---|---|---|---|---|
1,4-BDO | 90.12 | 230 | 20.1 | 1.02 | 1.4@25 °C | 202.34@25 °C | |
2,3-BDO | 90.12 | 177 | 19 | 0.967 | 23@20 °C | 227.2@27 °C | |
1,3-BDO | 90.12 | 207 | ‒77 | 1.01 | 8@20 °C | 227.2@27 °C | |
1,2-BDO | 90.12 | 192 | ‒42 | 1.002 | 2.7@20 °C | 240.4@25 °C |
Table 1 Properties of butanediols.
Butanediol | Structure | Molar mass (g/mol) | Boiling point (°C) | Melting point (°C) | Density (g/cm3) | Vapor pressure (Pa) | Heat capacity (J/(mol·°C )) |
---|---|---|---|---|---|---|---|
1,4-BDO | 90.12 | 230 | 20.1 | 1.02 | 1.4@25 °C | 202.34@25 °C | |
2,3-BDO | 90.12 | 177 | 19 | 0.967 | 23@20 °C | 227.2@27 °C | |
1,3-BDO | 90.12 | 207 | ‒77 | 1.01 | 8@20 °C | 227.2@27 °C | |
1,2-BDO | 90.12 | 192 | ‒42 | 1.002 | 2.7@20 °C | 240.4@25 °C |
Microorganism | Genotype | Substrate | Fermentation mode | Titer (g/L) | Yield (g/g) | Productivity (g/(L·h)) | Ref. |
---|---|---|---|---|---|---|---|
Klebsiella pneumoniae | wild type | glucose | fed-batch | 150.0 | 0.48 | 3.95 | [ |
Serratia marcescens | ΔswrW | sucrose | fed-batch | 152.0 | 0.46 | 2.67 | [ |
Klebsiella oxytoca | ΔaldA | glucose | fed-batch | 130.0 | 0.48 | 1.63 | [ |
Klebsiella pneumoniae | wild type | glycerol | fed-batch | 70.0 | 0.39 | 0.47 | [ |
Paenibacillus polymyxa | wild type | glucose | fed-batch | 111.0 | — | 2.06 | [ |
Bacillus licheniformis | wild type | glucose | fed-batch | 144.7 | 0.40 | 1.14 | [ |
Klebsiella pneumoniae | ↑budA ↑budB | glucose | fed-batch | 101.5 | 0.34 | 2.54 | [ |
Klebsiella oxytoca | ΔldhA | glucose | fed-batch | 115.0 | 0.41 | 2.27 | [ |
Saccharomyces cerevisiae | Δpdc1Δpdc5, point mutation in mth1, ↑alsS↑alsD↑bdh1 | glucose | fed-batch | 96.2 | 0.28 | 0.39 | [ |
Bacillus amyloliquefaciens | ↑bdh ↑gapA | glucose | fed-batch | 132.9 | 0.45 | 2.95 | [ |
Klebsiella pneumoniae | ΔadhEΔldhA | glucose | fed-batch | 116 | 0.49 | 2.23 | [ |
Klebsiella oxytoca | ↑budC | glucose | fed-batch | 142.5 | 0.42 | 1.47 | [ |
Enterobacter cloacae | mutant strain | glucose | fed-batch | 110.9 | 0.39 | 1.98 | [ |
Bacillus licheniformis | ΔbudC | glucose | fed-batch | 123.7 | — | 2.95 | [ |
Klebsiella oxytoca | ΔadhEΔackA-ptaΔldhAME | glucose | fed-batch | 117.4 | 0.49 | 1.20 | [ |
Enterobacter cloacae | ΔldhΔptsGΔbdhΔfrdA↑bdh↑galP | glucose/xylose | fed-batch | 152.0 | 0.49 | 3.50 | [ |
Klebsiella oxytoca | ΔldhAΔpflBΔbudC↑bdh | glucose | fed-batch | 106.7 | 0.40 | 3.10 | [ |
Bacillus subtilis | ↑alsS ↑alsD ↑budC ↑udhAΔuppΔacoAΔbdhAΔptaΔldh | glucose | fed-batch | 103.7 | 0.49 | 0.46 | [ |
Saccharomyces cerevisiae | ↑alsS↑alsD↑BDH1↑PDC1↑noxEΔPDC | glucose | fed-batch | 154.3 | 0.40 | 1.98 | [ |
Klebsiella sp. | random mutant | sucrose | fed-batch | 119.4 | 0.40 | 1.84 | [ |
Saccharomyces cerevisiae | ↑alsS ↑alsD ↑BDH1 ↑noxEΔadh1ΔPDC | glucose | fed-batch | 178.0 | 0.34 | 1.88 | [ |
Enterobacterludwigii | Wild type | VHP cane sugar | fed-batch | 111.0 | 0.40 | 1.11 | [ |
Bacillus licheniformis | ΔbudC | glucose | fed-batch | 123.0 | 0.41 | 1.71 | [ |
Enterobacter ludwigii | random mutant | xylose | fed-batch | 71.1 | 0.40 | 0.94 | [ |
Enterobacter ludwigii | random mutant | glucose | fed-batch | 144.5 | 0.47 | 1.51 | [ |
Klebsiella oxytoca | wild type | molasses | repeated batch | 118.0 | 0.42 | 2.40 | [ |
Klebsiella pneumoniae | wild type | jerusalem artichoke | fed-batch/SSF | 84.0 | 0.29 | 2.10 | [ |
Enterobacter cloacae | wild type | cassava powder | fed-batch/SSF | 93.9 | — | 2.00 | [ |
Enterobacter aerogenes | ΔldhAΔscrR | sugarcane molasses | fed-batch | 98.7 | 0.37 | 2.74 | [ |
Bacillus licheniformis | wild type | inulin | fed-batch/SSF | 103.0 | — | 3.43 | [ |
Bacillus licheniformis | wild type | apple pomace | fed-batch | 113.0 | 0.49 | 0.69 | [ |
Klebsiella oxytoca | ΔpduCΔldhA | crude glycerol | fed-batch | 131.5 | 0.44 | 0.84 | [ |
Enterobacter cloacae | mutant strain | sugarcane molasses | fed-batch | 90.8 | 0.36 | 1.66 | [ |
Enterobacter cloacae | ΔldhΔptsGΔbdhΔfrdA↑bdh↑galP | corn stover | fed-batch | 119.4 | 0.48 | 2.30 | [ |
Enterobacter cloacae | Wild type | corncob-derived xylose | fed-batch | 81.4 | 0.39 | 0.72 | [ |
Saccharomyces cerevisiae | ↑alsS ↑alsD ↑BDH1 ↑noxEΔadh1ΔPDC | cassava | fed-batch | 132.0 | 0.32 | 1.92 | [ |
Enterobacter ludwigii | random mutant | sugarcane bagasse | fed-batch | 63.5 | 0.36 | 0.84 | [ |
Enterobacter ludwigii | random mutant | brewer’s spent grains | fed-batch | 118.5 | 0.43 | 1.65 | [ |
Enterobacter ludwigii | random mutant | bread waste | fed-batch | 138.8 | 0.48 | 1.45 | [ |
ME: metabolic evolution |
Table 2 Summary of high-level production of 2,3-BDO from pure and crude renewable carbon sources by wild type and engineered strains.
Microorganism | Genotype | Substrate | Fermentation mode | Titer (g/L) | Yield (g/g) | Productivity (g/(L·h)) | Ref. |
---|---|---|---|---|---|---|---|
Klebsiella pneumoniae | wild type | glucose | fed-batch | 150.0 | 0.48 | 3.95 | [ |
Serratia marcescens | ΔswrW | sucrose | fed-batch | 152.0 | 0.46 | 2.67 | [ |
Klebsiella oxytoca | ΔaldA | glucose | fed-batch | 130.0 | 0.48 | 1.63 | [ |
Klebsiella pneumoniae | wild type | glycerol | fed-batch | 70.0 | 0.39 | 0.47 | [ |
Paenibacillus polymyxa | wild type | glucose | fed-batch | 111.0 | — | 2.06 | [ |
Bacillus licheniformis | wild type | glucose | fed-batch | 144.7 | 0.40 | 1.14 | [ |
Klebsiella pneumoniae | ↑budA ↑budB | glucose | fed-batch | 101.5 | 0.34 | 2.54 | [ |
Klebsiella oxytoca | ΔldhA | glucose | fed-batch | 115.0 | 0.41 | 2.27 | [ |
Saccharomyces cerevisiae | Δpdc1Δpdc5, point mutation in mth1, ↑alsS↑alsD↑bdh1 | glucose | fed-batch | 96.2 | 0.28 | 0.39 | [ |
Bacillus amyloliquefaciens | ↑bdh ↑gapA | glucose | fed-batch | 132.9 | 0.45 | 2.95 | [ |
Klebsiella pneumoniae | ΔadhEΔldhA | glucose | fed-batch | 116 | 0.49 | 2.23 | [ |
Klebsiella oxytoca | ↑budC | glucose | fed-batch | 142.5 | 0.42 | 1.47 | [ |
Enterobacter cloacae | mutant strain | glucose | fed-batch | 110.9 | 0.39 | 1.98 | [ |
Bacillus licheniformis | ΔbudC | glucose | fed-batch | 123.7 | — | 2.95 | [ |
Klebsiella oxytoca | ΔadhEΔackA-ptaΔldhAME | glucose | fed-batch | 117.4 | 0.49 | 1.20 | [ |
Enterobacter cloacae | ΔldhΔptsGΔbdhΔfrdA↑bdh↑galP | glucose/xylose | fed-batch | 152.0 | 0.49 | 3.50 | [ |
Klebsiella oxytoca | ΔldhAΔpflBΔbudC↑bdh | glucose | fed-batch | 106.7 | 0.40 | 3.10 | [ |
Bacillus subtilis | ↑alsS ↑alsD ↑budC ↑udhAΔuppΔacoAΔbdhAΔptaΔldh | glucose | fed-batch | 103.7 | 0.49 | 0.46 | [ |
Saccharomyces cerevisiae | ↑alsS↑alsD↑BDH1↑PDC1↑noxEΔPDC | glucose | fed-batch | 154.3 | 0.40 | 1.98 | [ |
Klebsiella sp. | random mutant | sucrose | fed-batch | 119.4 | 0.40 | 1.84 | [ |
Saccharomyces cerevisiae | ↑alsS ↑alsD ↑BDH1 ↑noxEΔadh1ΔPDC | glucose | fed-batch | 178.0 | 0.34 | 1.88 | [ |
Enterobacterludwigii | Wild type | VHP cane sugar | fed-batch | 111.0 | 0.40 | 1.11 | [ |
Bacillus licheniformis | ΔbudC | glucose | fed-batch | 123.0 | 0.41 | 1.71 | [ |
Enterobacter ludwigii | random mutant | xylose | fed-batch | 71.1 | 0.40 | 0.94 | [ |
Enterobacter ludwigii | random mutant | glucose | fed-batch | 144.5 | 0.47 | 1.51 | [ |
Klebsiella oxytoca | wild type | molasses | repeated batch | 118.0 | 0.42 | 2.40 | [ |
Klebsiella pneumoniae | wild type | jerusalem artichoke | fed-batch/SSF | 84.0 | 0.29 | 2.10 | [ |
Enterobacter cloacae | wild type | cassava powder | fed-batch/SSF | 93.9 | — | 2.00 | [ |
Enterobacter aerogenes | ΔldhAΔscrR | sugarcane molasses | fed-batch | 98.7 | 0.37 | 2.74 | [ |
Bacillus licheniformis | wild type | inulin | fed-batch/SSF | 103.0 | — | 3.43 | [ |
Bacillus licheniformis | wild type | apple pomace | fed-batch | 113.0 | 0.49 | 0.69 | [ |
Klebsiella oxytoca | ΔpduCΔldhA | crude glycerol | fed-batch | 131.5 | 0.44 | 0.84 | [ |
Enterobacter cloacae | mutant strain | sugarcane molasses | fed-batch | 90.8 | 0.36 | 1.66 | [ |
Enterobacter cloacae | ΔldhΔptsGΔbdhΔfrdA↑bdh↑galP | corn stover | fed-batch | 119.4 | 0.48 | 2.30 | [ |
Enterobacter cloacae | Wild type | corncob-derived xylose | fed-batch | 81.4 | 0.39 | 0.72 | [ |
Saccharomyces cerevisiae | ↑alsS ↑alsD ↑BDH1 ↑noxEΔadh1ΔPDC | cassava | fed-batch | 132.0 | 0.32 | 1.92 | [ |
Enterobacter ludwigii | random mutant | sugarcane bagasse | fed-batch | 63.5 | 0.36 | 0.84 | [ |
Enterobacter ludwigii | random mutant | brewer’s spent grains | fed-batch | 118.5 | 0.43 | 1.65 | [ |
Enterobacter ludwigii | random mutant | bread waste | fed-batch | 138.8 | 0.48 | 1.45 | [ |
ME: metabolic evolution |
Microorganism | Genotype | Substrate | Fermentation mode | Titer (g/L) | Yield (g/g) | Productivity (g/(L·h)) | Ref. |
---|---|---|---|---|---|---|---|
E. coli | ↑phaA↑phaB↑bld | glucose | fed-batch | 9.05 | — | 0.08 | [ |
E. coli | ↑phaA↑phaB↑bld | glucose | fed-batch | 15.7 | 0.19 | 0.16 | [ |
E. coli | ↑AKR↑DERA ↑PDC ΔadhEΔldhAΔpflBδyqhDΔeutGΔadhPΔyjgBΔilvBΔpoxBΔpta | glucose | fed-batch | 2.4 | 0.058 | — | [ |
E. coli | ↑bldL273T↑yqhD↑phaA↑phaB↑pntA↑pntB↑sfp↑yqhD | glucose | fed-batch | 13.4 | 0.29 | 0.42 | [ |
E. coli | ↑thl↑hbd↑tesB ↑car↓fabD↓accAΔeddΔpfkB | glucose | fed-batch | 22.7 | 0.40 | 0.32 | [ |
E. coli | ↑phaA↑phaB↑bld ↑yqhDΔadhEΔldhAΔpoxBΔpta-ackAΔpyciA | glucose | fed-batch | 23.1 | 0.25 | 0.64 | [ |
C. necator | ↑bld↑yqhD↑dra↑PDC↑phaABΔphaC1 | CO2 | fed-batch | 3.0 | 0.20 | 0.025 | [ |
Cell free in vitro synthesis | ↑ADH ↑NOX↑DERA↑AKR↑FDH | ethanol | batch | 7.7 | 0.83* | 0.16 | [ |
Table 3 Summary of non-native 1,3-BDO production by microbial cell factories.
Microorganism | Genotype | Substrate | Fermentation mode | Titer (g/L) | Yield (g/g) | Productivity (g/(L·h)) | Ref. |
---|---|---|---|---|---|---|---|
E. coli | ↑phaA↑phaB↑bld | glucose | fed-batch | 9.05 | — | 0.08 | [ |
E. coli | ↑phaA↑phaB↑bld | glucose | fed-batch | 15.7 | 0.19 | 0.16 | [ |
E. coli | ↑AKR↑DERA ↑PDC ΔadhEΔldhAΔpflBδyqhDΔeutGΔadhPΔyjgBΔilvBΔpoxBΔpta | glucose | fed-batch | 2.4 | 0.058 | — | [ |
E. coli | ↑bldL273T↑yqhD↑phaA↑phaB↑pntA↑pntB↑sfp↑yqhD | glucose | fed-batch | 13.4 | 0.29 | 0.42 | [ |
E. coli | ↑thl↑hbd↑tesB ↑car↓fabD↓accAΔeddΔpfkB | glucose | fed-batch | 22.7 | 0.40 | 0.32 | [ |
E. coli | ↑phaA↑phaB↑bld ↑yqhDΔadhEΔldhAΔpoxBΔpta-ackAΔpyciA | glucose | fed-batch | 23.1 | 0.25 | 0.64 | [ |
C. necator | ↑bld↑yqhD↑dra↑PDC↑phaABΔphaC1 | CO2 | fed-batch | 3.0 | 0.20 | 0.025 | [ |
Cell free in vitro synthesis | ↑ADH ↑NOX↑DERA↑AKR↑FDH | ethanol | batch | 7.7 | 0.83* | 0.16 | [ |
Microorganism | Genotype | Substrate | Fermetation mode | Titer (g/L) | Yield (g/g) | Productivity (g/(L·h)) | Ref. |
---|---|---|---|---|---|---|---|
E. coli | ΔadhEΔpflBΔldhAΔmdhΔarcAΔlpdA Kp.lpdD354K gltAR163L↑sucCD↑sucD↑4hbd/↑sucA↑adh(025B) ↑Cat2 | glucose | fed-batch | 18.0 | 0.37 | 0.15 | [ |
E. coli | not available | glucose | fed-batch | 29.0 | 0.25 | 0.60 | [ |
E. coli | not available | glucose | fed-batch | 99.0 | 0.35 | 2.10 | [ |
E. coli | not available | glucose | fed-batch | >125.0 | >0.40 | >3.50 | [ |
E. coli | ΔxylAΔyjhHΔyagE↑xdh↑xylX↑mdlC | xylose | batch | 0.44 | 0.042 | — | [ |
E. coli | ΔxylAΔyagEΔyjhH↑xylB↑xylC↑xylD↑xylX↑kivd(V461I)↑yqhD | xylose + glucose | fed-batch | 9.2 | 0.22 | 0.26 | [ |
E. coli | ΔxylAΔyagEΔyjhH↑xylB↑xylC↑xylD↑xylX↑kivd(V461I)↑yqhD↑atoB↑mvaS↑mvaE | xylose + glucose | fed-batch | 12.0 | 0.26 | 0.40 | [ |
E. coli | ↑araC↑araD↑araA↑araB↑kivd↑yqhD | arabinose + glucose | fed-batch | 15.6 | 0.22 | 0.22 | [ |
E. coli | ΔgarLΔuxaC↑udh↑garD↑ycbC↑kivd↑yqhD | galactouronic acid + glucose | fed-batch | 16.5 | 0.33 | 0.18 | [ |
E. coli | ΔxylAΔyagEΔyjhH↑xylBC↑xylD↑kivD↑yqhD↑ppdA-C-B (S301AQ336AV300M) | xylose | batch | 0.21 | — | — | [ |
E. coli* | ↑gldABC(S302AQ337A) | erythritol | batch | 16.1 | 0.009 | 0.81 | [ |
E. coli* | ↑pddABC(S301AQ336A) | erythritol | batch | 11.9 | 0.006 | 0.6 | [ |
E. coli* | ↑gldABC(S302AQ337A) | erythritol | batch | 34.5 | — | — | [ |
Table 4 Overview of 1,4-BDO production from different carbon sources by engineered microorganisms.
Microorganism | Genotype | Substrate | Fermetation mode | Titer (g/L) | Yield (g/g) | Productivity (g/(L·h)) | Ref. |
---|---|---|---|---|---|---|---|
E. coli | ΔadhEΔpflBΔldhAΔmdhΔarcAΔlpdA Kp.lpdD354K gltAR163L↑sucCD↑sucD↑4hbd/↑sucA↑adh(025B) ↑Cat2 | glucose | fed-batch | 18.0 | 0.37 | 0.15 | [ |
E. coli | not available | glucose | fed-batch | 29.0 | 0.25 | 0.60 | [ |
E. coli | not available | glucose | fed-batch | 99.0 | 0.35 | 2.10 | [ |
E. coli | not available | glucose | fed-batch | >125.0 | >0.40 | >3.50 | [ |
E. coli | ΔxylAΔyjhHΔyagE↑xdh↑xylX↑mdlC | xylose | batch | 0.44 | 0.042 | — | [ |
E. coli | ΔxylAΔyagEΔyjhH↑xylB↑xylC↑xylD↑xylX↑kivd(V461I)↑yqhD | xylose + glucose | fed-batch | 9.2 | 0.22 | 0.26 | [ |
E. coli | ΔxylAΔyagEΔyjhH↑xylB↑xylC↑xylD↑xylX↑kivd(V461I)↑yqhD↑atoB↑mvaS↑mvaE | xylose + glucose | fed-batch | 12.0 | 0.26 | 0.40 | [ |
E. coli | ↑araC↑araD↑araA↑araB↑kivd↑yqhD | arabinose + glucose | fed-batch | 15.6 | 0.22 | 0.22 | [ |
E. coli | ΔgarLΔuxaC↑udh↑garD↑ycbC↑kivd↑yqhD | galactouronic acid + glucose | fed-batch | 16.5 | 0.33 | 0.18 | [ |
E. coli | ΔxylAΔyagEΔyjhH↑xylBC↑xylD↑kivD↑yqhD↑ppdA-C-B (S301AQ336AV300M) | xylose | batch | 0.21 | — | — | [ |
E. coli* | ↑gldABC(S302AQ337A) | erythritol | batch | 16.1 | 0.009 | 0.81 | [ |
E. coli* | ↑pddABC(S301AQ336A) | erythritol | batch | 11.9 | 0.006 | 0.6 | [ |
E. coli* | ↑gldABC(S302AQ337A) | erythritol | batch | 34.5 | — | — | [ |
Fig. 2. Biochemical route for production of 1,4-BDO. The enzymes in red indicate the steps leading to carbon loss and by-product formation [18,23,49].
Catalyst | Acidity (μmol/g) | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | MEK | BD | IBA | Others | ||||
AlP | 930 | 1.5 | 250 | — | 100 | 78.1 | 6.9 | 13.4 | C8-C12: 1.5 | [ |
ZrP | 840 | 400 | 250 | 11.2 | 65.8 | 3.5 | 23.5 | C8-C12: 4.1 | ||
γ-Al2O3 | 189 | 10 | 250 | 25 | 82.8 | 73.3 | 3.2 | 2.8 | C8-C12: 19.9 | [ |
H-BEA | 220 | 10 | 250 | 25 | 81.6 | 51.9 | 4.6 | 16.3 | C8-C12: 26.1, 3B2OL: 0.2 | |
deAl BEA1 | 43 | 75.9 | 50.5 | 4.2 | 17.4 | C8-C12: 27.6, 3B2OL: 0.2 | ||||
Zr-BEA | 270 | 80 | 25.7 | 2.3 | 7.2 | C8-C12: 63.1, 3B2OL: 0.1 | ||||
2%P/HZSM-5 | 1407 | 4 | 180 | 12.5 | ~100 | ~75 | — | ~15 | — | [ |
1%B/HZSM-5 | 963.8 | 4 | 180 | 12.5 | 97.2 | 68.4 | 1.2 | 16.8 | — | [ |
963.8 | 200 | 100 | 69.7 | 1.4 | 20.1 | — | ||||
a-CP2 | — | 17803 | 324.5 | 10 | ~100 | ~32 | ~20 | 5 | 3B2OL: ~16 | [ |
P/SiO2_9.84 | — | 0.04 | 180 | 10 | 100 | 49.2 | 21.4 | 11.8 | BT: 2.9 | [ |
Table 5 Summary of vapor phase dehydration of 2,3-BDO to MEK in a fixed-bed reactor.
Catalyst | Acidity (μmol/g) | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | MEK | BD | IBA | Others | ||||
AlP | 930 | 1.5 | 250 | — | 100 | 78.1 | 6.9 | 13.4 | C8-C12: 1.5 | [ |
ZrP | 840 | 400 | 250 | 11.2 | 65.8 | 3.5 | 23.5 | C8-C12: 4.1 | ||
γ-Al2O3 | 189 | 10 | 250 | 25 | 82.8 | 73.3 | 3.2 | 2.8 | C8-C12: 19.9 | [ |
H-BEA | 220 | 10 | 250 | 25 | 81.6 | 51.9 | 4.6 | 16.3 | C8-C12: 26.1, 3B2OL: 0.2 | |
deAl BEA1 | 43 | 75.9 | 50.5 | 4.2 | 17.4 | C8-C12: 27.6, 3B2OL: 0.2 | ||||
Zr-BEA | 270 | 80 | 25.7 | 2.3 | 7.2 | C8-C12: 63.1, 3B2OL: 0.1 | ||||
2%P/HZSM-5 | 1407 | 4 | 180 | 12.5 | ~100 | ~75 | — | ~15 | — | [ |
1%B/HZSM-5 | 963.8 | 4 | 180 | 12.5 | 97.2 | 68.4 | 1.2 | 16.8 | — | [ |
963.8 | 200 | 100 | 69.7 | 1.4 | 20.1 | — | ||||
a-CP2 | — | 17803 | 324.5 | 10 | ~100 | ~32 | ~20 | 5 | 3B2OL: ~16 | [ |
P/SiO2_9.84 | — | 0.04 | 180 | 10 | 100 | 49.2 | 21.4 | 11.8 | BT: 2.9 | [ |
Catalyst | Acidity | Basicity | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | 3B2OL | MEK | IBA | Others | |||||
ZrO2 a | — | — | 1 | 325 | 45c | 62.5 | 48.6 | 16 | 1.3 | IBO: 7.8, acetoin: 14.9, others: 11.4 | [ |
ZrO2 b | — | — | 45 | 76.4 | 43.8 | 17.9 | 1.1 | IBO: 7.4, acetoin: 11.4, others: 18.4 | |||
CaO/ZrO2a | — | 211.3d | 1.06 | 350 | 80c | ~60 | ~70 | — | — | — | [ |
SrO/ZrO2a | — | — | ~60 | ~78 | — | — | |||||
BaO/ZrO2a | — | — | ~75 | ~75 | — | — | |||||
MgO/ZrO2a | — | — | ~40 | ~70 | — | — | |||||
2K_P/SiO2_20 | 30.2f | 21.14f | 1.2 | 400 | 100 | 64 | 78e | 9 | BTO: 10, acetoin + BDOn: 2 | [ | |
1.75 Cs_P/SiO2_20 | 24f | — | 46 | 50e | 10 | BTO: 28.6, acetoin + BDOn: 6 | |||||
1.82 Na_P/SiO2 - 17.2g | 18.15f | 3.63f | 1.11 | 180 | 100 | 94.6 | 53.7 | 17.4 | 1.5 | BD: 13.5, acetoin + BDOn: 1.9, BTO: 4.4 | [ |
3Sc0.5Yb1.5O3 | — | — | 1.06 | 411 | 45c | 99.2 | 35.3 | 14.9 | 6.3 | BD: 9.2, IBO: 5.9, others: 28.4 | [ |
Nd2O3 | — | — | 425 | 87.8 | 35.2 | 16.9 | 4.0 | BD: 0.0, IBO: 6.0, others: 37.9 |
Table 6 Summary of vapor phase dehydration of 2,3-BDO to 3B2OL in a fixed-bed reactor.
Catalyst | Acidity | Basicity | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | 3B2OL | MEK | IBA | Others | |||||
ZrO2 a | — | — | 1 | 325 | 45c | 62.5 | 48.6 | 16 | 1.3 | IBO: 7.8, acetoin: 14.9, others: 11.4 | [ |
ZrO2 b | — | — | 45 | 76.4 | 43.8 | 17.9 | 1.1 | IBO: 7.4, acetoin: 11.4, others: 18.4 | |||
CaO/ZrO2a | — | 211.3d | 1.06 | 350 | 80c | ~60 | ~70 | — | — | — | [ |
SrO/ZrO2a | — | — | ~60 | ~78 | — | — | |||||
BaO/ZrO2a | — | — | ~75 | ~75 | — | — | |||||
MgO/ZrO2a | — | — | ~40 | ~70 | — | — | |||||
2K_P/SiO2_20 | 30.2f | 21.14f | 1.2 | 400 | 100 | 64 | 78e | 9 | BTO: 10, acetoin + BDOn: 2 | [ | |
1.75 Cs_P/SiO2_20 | 24f | — | 46 | 50e | 10 | BTO: 28.6, acetoin + BDOn: 6 | |||||
1.82 Na_P/SiO2 - 17.2g | 18.15f | 3.63f | 1.11 | 180 | 100 | 94.6 | 53.7 | 17.4 | 1.5 | BD: 13.5, acetoin + BDOn: 1.9, BTO: 4.4 | [ |
3Sc0.5Yb1.5O3 | — | — | 1.06 | 411 | 45c | 99.2 | 35.3 | 14.9 | 6.3 | BD: 9.2, IBO: 5.9, others: 28.4 | [ |
Nd2O3 | — | — | 425 | 87.8 | 35.2 | 16.9 | 4.0 | BD: 0.0, IBO: 6.0, others: 37.9 |
Catalyst | Acidity (mmolNH3/g) | Basicity (mmolCO2/g) | Reaction conditions | X (%) | Selectivity (%) | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WHSV (h-1) | T (°C) | N2 (mL/min) | BD | MEK | IBA | Others | ||||||
Sc2O3 | — | — | 1.06 | 411 | 45a | 100 | 88.3 | 1.1 | 0.1 | 3B2OL: 0.8, IBO: 0.3, Others: 9.4 | [ | |
Lu2O3 | — | — | 425 | 99 | 23.2 | 23.1 | 1.8 | 3B2OL: 5.0, IBO: 0.8, Others: 46.1 | ||||
CeO2 | — | — | 425 | 100 | 0.5 | 39.2 | 2.4 | 3B2OL: 0.5, IBO: 0.6, Others: 56.8 | ||||
γ-Al2O3 | 0.24 | 0.059 | 11.8 | 450 | 100 | 100 | 28 | 56.9 | 3.3 | C3: 1.4, Others: 10.4 | [ | |
— | — | 395 | 350 | 75b | 13 | 60 | 11 | 13 | BTO: 15 | [ | ||
GdPO4 | — | — | 30c | 300 | 100 | 100 | ~50 | ~38 | ~12 | — | [ | |
NdPO4 | — | — | 100 | ~55 | ~35 | ~10 | — | |||||
LaPO4 | — | — | ~95 | ~50 | ~40 | ~9 | — | |||||
2K_P/SiO2_20 | 30.2f | 21.14f | 1.2 | 400 | 100 | 64 | 78d | 9e | BDOn + Actn: 2 BTO: 10 | [ | ||
1.5Cs_P/SiO2_20 | — | — | 83 | 50 | 12 | BDOn + Actn: 4 BTO: 7.3 | ||||||
10%CsH2PO4/CARiACT Q10 | — | — | 0.99 | 404 | 30 | >99.9 | 91.9 | 7.0 | 0.3 | 3B2OL: 0.2, Butenes: 0.4, Others: 0.2 | [ |
Table 7 Summary of vapor phase dehydration of 2,3-BDO to BD in fixed-bed reactor.
Catalyst | Acidity (mmolNH3/g) | Basicity (mmolCO2/g) | Reaction conditions | X (%) | Selectivity (%) | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WHSV (h-1) | T (°C) | N2 (mL/min) | BD | MEK | IBA | Others | ||||||
Sc2O3 | — | — | 1.06 | 411 | 45a | 100 | 88.3 | 1.1 | 0.1 | 3B2OL: 0.8, IBO: 0.3, Others: 9.4 | [ | |
Lu2O3 | — | — | 425 | 99 | 23.2 | 23.1 | 1.8 | 3B2OL: 5.0, IBO: 0.8, Others: 46.1 | ||||
CeO2 | — | — | 425 | 100 | 0.5 | 39.2 | 2.4 | 3B2OL: 0.5, IBO: 0.6, Others: 56.8 | ||||
γ-Al2O3 | 0.24 | 0.059 | 11.8 | 450 | 100 | 100 | 28 | 56.9 | 3.3 | C3: 1.4, Others: 10.4 | [ | |
— | — | 395 | 350 | 75b | 13 | 60 | 11 | 13 | BTO: 15 | [ | ||
GdPO4 | — | — | 30c | 300 | 100 | 100 | ~50 | ~38 | ~12 | — | [ | |
NdPO4 | — | — | 100 | ~55 | ~35 | ~10 | — | |||||
LaPO4 | — | — | ~95 | ~50 | ~40 | ~9 | — | |||||
2K_P/SiO2_20 | 30.2f | 21.14f | 1.2 | 400 | 100 | 64 | 78d | 9e | BDOn + Actn: 2 BTO: 10 | [ | ||
1.5Cs_P/SiO2_20 | — | — | 83 | 50 | 12 | BDOn + Actn: 4 BTO: 7.3 | ||||||
10%CsH2PO4/CARiACT Q10 | — | — | 0.99 | 404 | 30 | >99.9 | 91.9 | 7.0 | 0.3 | 3B2OL: 0.2, Butenes: 0.4, Others: 0.2 | [ |
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | Acetoin | BDOn | Others | |||
20Cu-SiO2-10.5 | 60 | 280 | 40 | 76 | 94.5 | — | — | [ |
15Cu-Al2O3 | 2.5 | 220 | 100 | 98 | 49 | 9 | 42 | [ |
15Cu-ZrO2 | 97 | 75 | 15 | 10 | ||||
15Cu-Al2O3a | 2.5 | 220 | 100 | 89 | 39 | — | 69 | [ |
15Cu-ZrO2a | 2.5 | 220 | 100 | 85 | 89 | — | 11 | [ |
Zn-Cr oxide | 1.6b | 375 | — | 70 | ~50 | ~40 | — | [ |
Mg-V oxide | 1b | 350 | 1c | 89 | 26 | 62.3 | — |
Table 8 Summary of vapor phase dehydration of 2,3-BDO to acetoin in a fixed-bed reactor.
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | Acetoin | BDOn | Others | |||
20Cu-SiO2-10.5 | 60 | 280 | 40 | 76 | 94.5 | — | — | [ |
15Cu-Al2O3 | 2.5 | 220 | 100 | 98 | 49 | 9 | 42 | [ |
15Cu-ZrO2 | 97 | 75 | 15 | 10 | ||||
15Cu-Al2O3a | 2.5 | 220 | 100 | 89 | 39 | — | 69 | [ |
15Cu-ZrO2a | 2.5 | 220 | 100 | 85 | 89 | — | 11 | [ |
Zn-Cr oxide | 1.6b | 375 | — | 70 | ~50 | ~40 | — | [ |
Mg-V oxide | 1b | 350 | 1c | 89 | 26 | 62.3 | — |
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | H2 (mL/min) | Butylene | MEK | IBA | Others | |||
9.2%CuO/ZSM-5(280) | 3.0 | 250 | 5a | 100 | 62.84 | 24.3 | — | Olefines: 2.83 | [ |
5V/SiO2 | 1.5 | 500 | 40b | 100 | ~45 | ~30 | ~15 | C1‒C3: ~5, Others: 5 | [ |
Cu-PMFI | 1 | 250 | 94.8 kPa | 96 | 65 | 21 | — | Pentene: 6.6, Hexenes: 3.0, Others: 4.4 | [ |
Cu/Al-MCM-48 (100) | 3.0 | 250 | 5a | 100 | 72.6 | 10.1 | 0.4 | 16.9 | [ |
Cu/Al-SBA-15 (50) | 76.6 | 4.3 | 0.2 | 18.9 | |||||
Cu/meso-ZSM5 (280) | 40.3 | 1.7 | 58 |
Table 9 Summary of vapor phase conversion of 2,3-BDO to butylenes in a fixed-bed reactor.
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | H2 (mL/min) | Butylene | MEK | IBA | Others | |||
9.2%CuO/ZSM-5(280) | 3.0 | 250 | 5a | 100 | 62.84 | 24.3 | — | Olefines: 2.83 | [ |
5V/SiO2 | 1.5 | 500 | 40b | 100 | ~45 | ~30 | ~15 | C1‒C3: ~5, Others: 5 | [ |
Cu-PMFI | 1 | 250 | 94.8 kPa | 96 | 65 | 21 | — | Pentene: 6.6, Hexenes: 3.0, Others: 4.4 | [ |
Cu/Al-MCM-48 (100) | 3.0 | 250 | 5a | 100 | 72.6 | 10.1 | 0.4 | 16.9 | [ |
Cu/Al-SBA-15 (50) | 76.6 | 4.3 | 0.2 | 18.9 | |||||
Cu/meso-ZSM5 (280) | 40.3 | 1.7 | 58 |
Catalyst | Acidity | Reaction condition | X (%) | Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | THF | Others | |||||
Fixed-bed reactor | |||||||||
2.5 wt% Yb2O3/ZrO2 | 98.2 | 53.7 | 310 | 30 | — | ~80 | BTO: ~20 | [ | |
m-ZrO2 | 114.5 | — | ~78 | BTO: ~22 | |||||
Al2O3 | — | 2.4 | 325 | 26 | 100 | 97.4 | 3B1OL: 0.1, Others: 2.5 | [ | |
t-ZrO2 | — | 99.9 | 96.8 | 3B1OL: 0.7, GBL: 0.3, Others: 2.3 | |||||
Yb/SiO2 | — | 100 | 98.3 | 3B1OL: 0.2, GBL: 0.1, Others: 1.4 | |||||
Yb/t-ZrO2 | — | 77.1 | 50.7 | 3B1OL: 39.4, GBL: 0.8, Others: 9.1 | |||||
AMW | — | 1.0 | 375 | 30 | 97 | 99 | Others: 1 | [ | |
CaO-ZrO2a | 261 | 1.02 | 350 | 30 | 99.1 | 79.6 | 3B1OL: 18.1, GBL: 1.1, Others: 1.2 | [ | |
Batch reactor | |||||||||
Amberlyst-15 | — | 100 °C, 900 mL pure 1,4-BDO, 5 g catalyst, 1 h | 29.32, 45.7b | Selective c | 1% | [ | |||
Bu4PBr | — | 220 °C, 0.04 mL 1,4-BDO, 0.58 g of catalyst, 15 min | 100 | 72% | BD: 27, Butanal: 1 | [ | |||
HnbMoO6 | 1.9d | 140 °C, 3 mL water solvent, 900 mL 1,4-BDO, 0.05 g catalyst, 3 h | 19 | > 99 | < 1% | [ | |||
HZSM-5 | 200 | 50 | > 99 | < 1% | |||||
HZSM-5 (23) | — | 225 °C, 17 bar N2, 1,4-dioxane solvent, 0.7 mol 1,4-BDO/L, 10 g catalyst, 3 h | 93.8 | 99.6 | < 1% | [ | |||
H-Y (5.1) | — | 89.5 | 99.3 | ||||||
H-Mordenite (90) | — | 88.2 | 99.7 | ||||||
H-Beta (25) | — | 90.3 | 99.9 | ||||||
Ferrierite (20) | — | 80.2 | 99.5 | ||||||
4.6CuO/nano ZSM-5 | — | 170 °C, 2.5 g catalyst, 50 g 1,4-BDO, 3 h | 100 | > 99 | < 1% | [ |
Table 10 Summary of 1,4-BDO dehydration to THF.
Catalyst | Acidity | Reaction condition | X (%) | Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | THF | Others | |||||
Fixed-bed reactor | |||||||||
2.5 wt% Yb2O3/ZrO2 | 98.2 | 53.7 | 310 | 30 | — | ~80 | BTO: ~20 | [ | |
m-ZrO2 | 114.5 | — | ~78 | BTO: ~22 | |||||
Al2O3 | — | 2.4 | 325 | 26 | 100 | 97.4 | 3B1OL: 0.1, Others: 2.5 | [ | |
t-ZrO2 | — | 99.9 | 96.8 | 3B1OL: 0.7, GBL: 0.3, Others: 2.3 | |||||
Yb/SiO2 | — | 100 | 98.3 | 3B1OL: 0.2, GBL: 0.1, Others: 1.4 | |||||
Yb/t-ZrO2 | — | 77.1 | 50.7 | 3B1OL: 39.4, GBL: 0.8, Others: 9.1 | |||||
AMW | — | 1.0 | 375 | 30 | 97 | 99 | Others: 1 | [ | |
CaO-ZrO2a | 261 | 1.02 | 350 | 30 | 99.1 | 79.6 | 3B1OL: 18.1, GBL: 1.1, Others: 1.2 | [ | |
Batch reactor | |||||||||
Amberlyst-15 | — | 100 °C, 900 mL pure 1,4-BDO, 5 g catalyst, 1 h | 29.32, 45.7b | Selective c | 1% | [ | |||
Bu4PBr | — | 220 °C, 0.04 mL 1,4-BDO, 0.58 g of catalyst, 15 min | 100 | 72% | BD: 27, Butanal: 1 | [ | |||
HnbMoO6 | 1.9d | 140 °C, 3 mL water solvent, 900 mL 1,4-BDO, 0.05 g catalyst, 3 h | 19 | > 99 | < 1% | [ | |||
HZSM-5 | 200 | 50 | > 99 | < 1% | |||||
HZSM-5 (23) | — | 225 °C, 17 bar N2, 1,4-dioxane solvent, 0.7 mol 1,4-BDO/L, 10 g catalyst, 3 h | 93.8 | 99.6 | < 1% | [ | |||
H-Y (5.1) | — | 89.5 | 99.3 | ||||||
H-Mordenite (90) | — | 88.2 | 99.7 | ||||||
H-Beta (25) | — | 90.3 | 99.9 | ||||||
Ferrierite (20) | — | 80.2 | 99.5 | ||||||
4.6CuO/nano ZSM-5 | — | 170 °C, 2.5 g catalyst, 50 g 1,4-BDO, 3 h | 100 | > 99 | < 1% | [ |
Catalyst | Acidity | Basicity | Reaction condition | X (%) | Selectivity (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | 3B1OL | THF | GBL | Others | Ref. | |||||
ZrO2 | — | — | 6 | 350 | 73a | 86.4 | 48.0 | 44.9 | — | 7.1 | [ | |
1.5 Na-ZrO2 | 0 | 396 | 1.8 | 325 | 73a | 18.7 | 71.8 | 20.8 | 2.1 | 5.3 | [ | |
1.5 Li-ZrO2 | — | — | 19.1 | 63.5 | 27.9 | 1.0 | 7.5 | |||||
1.5 K-ZrO2 | — | — | 19.0 | 63.6 | 26.9 | 3.9 | 5.6 | |||||
1.5P/ZrO2 | 142 | 103 | 99.9 | 11.4 | 80.6 | 0.6 | 7.4 | |||||
CaO/ZrO2 | 295 | 496 | 3.3 | 350 | 30 | 92.6 | 65.4 | 11.3 | — | 23.3 | [ | |
SrO/ZrO2 | 127 | 211 | 84.1 | 45.1 | 33.7 | — | 21.2 | |||||
BaO/ZrO2 | 72 | 164 | 74.3 | 35.9 | 40.8 | — | 23.3 | |||||
12.5CaO/ZrO2 b | 251 | 486 | 1.02 | 350 | 30 | 94.6 | 68.9 | 9.8 | 6.3 | 15 | [ | |
CeO2 | — | — | 0.1662 | 400 | 73 a | 87.6 | 68.1 | 3.7 | — | BD: 1.7, others: 26.5 | [ | |
CeO2 | — | — | 0.073 | 425 | 29 a | 74 | 57.1 | 17.4 | 3.0 | 2B1OL: 7.5, others: 15 | [ | |
CeO2-N | — | — | 1.02c | 375 | — | 78.5 | 55.0 | 3.3 | 2.4 | 39.2 | [ | |
CeO2-AH | — | — | 91.7 | 51.4 | 4.2 | 3.1 | 41.3 | |||||
CeO2 | — | — | 94.5 | 63.2 | 3.0 | 0.9 | 32.9 | |||||
Yb/ZrO2 | 281d | 281d | 2.5 | 325 | 26 | 50.8 | 86.5 | 4.3 | 1.1 | 8.1 | [ | |
Yb2O3 | — | — | 22.17 | 375 | 30 | 33.9 | 87.6 | 1.3 | 0.9 | 2B1OL: 7.5 | [ | |
Sc2O3 | — | — | 20.6 | 70 | 22.8 | 1.7 | 2B1OL: 1.5 | |||||
Mg7Yb3 oxide | 116 | 260.5 | 1.08 | 350 | — | 90.4 | 78.6 | — | — | 21.7 | [ |
Table 11 Summary of vapor phase dehydration of 1,4-BDO to 3B1OL in a fixed-bed reactor.
Catalyst | Acidity | Basicity | Reaction condition | X (%) | Selectivity (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | 3B1OL | THF | GBL | Others | Ref. | |||||
ZrO2 | — | — | 6 | 350 | 73a | 86.4 | 48.0 | 44.9 | — | 7.1 | [ | |
1.5 Na-ZrO2 | 0 | 396 | 1.8 | 325 | 73a | 18.7 | 71.8 | 20.8 | 2.1 | 5.3 | [ | |
1.5 Li-ZrO2 | — | — | 19.1 | 63.5 | 27.9 | 1.0 | 7.5 | |||||
1.5 K-ZrO2 | — | — | 19.0 | 63.6 | 26.9 | 3.9 | 5.6 | |||||
1.5P/ZrO2 | 142 | 103 | 99.9 | 11.4 | 80.6 | 0.6 | 7.4 | |||||
CaO/ZrO2 | 295 | 496 | 3.3 | 350 | 30 | 92.6 | 65.4 | 11.3 | — | 23.3 | [ | |
SrO/ZrO2 | 127 | 211 | 84.1 | 45.1 | 33.7 | — | 21.2 | |||||
BaO/ZrO2 | 72 | 164 | 74.3 | 35.9 | 40.8 | — | 23.3 | |||||
12.5CaO/ZrO2 b | 251 | 486 | 1.02 | 350 | 30 | 94.6 | 68.9 | 9.8 | 6.3 | 15 | [ | |
CeO2 | — | — | 0.1662 | 400 | 73 a | 87.6 | 68.1 | 3.7 | — | BD: 1.7, others: 26.5 | [ | |
CeO2 | — | — | 0.073 | 425 | 29 a | 74 | 57.1 | 17.4 | 3.0 | 2B1OL: 7.5, others: 15 | [ | |
CeO2-N | — | — | 1.02c | 375 | — | 78.5 | 55.0 | 3.3 | 2.4 | 39.2 | [ | |
CeO2-AH | — | — | 91.7 | 51.4 | 4.2 | 3.1 | 41.3 | |||||
CeO2 | — | — | 94.5 | 63.2 | 3.0 | 0.9 | 32.9 | |||||
Yb/ZrO2 | 281d | 281d | 2.5 | 325 | 26 | 50.8 | 86.5 | 4.3 | 1.1 | 8.1 | [ | |
Yb2O3 | — | — | 22.17 | 375 | 30 | 33.9 | 87.6 | 1.3 | 0.9 | 2B1OL: 7.5 | [ | |
Sc2O3 | — | — | 20.6 | 70 | 22.8 | 1.7 | 2B1OL: 1.5 | |||||
Mg7Yb3 oxide | 116 | 260.5 | 1.08 | 350 | — | 90.4 | 78.6 | — | — | 21.7 | [ |
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||
---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | BD | others | |||
CeO2 | 6 | 275 | 29a | 6.3 | 87.4 | others: 12.6 | [ |
450 | 94.9 | 24.8 | 3B1OL: 25.9, THF: 7.6, Others: 41.7 | ||||
SiO2-Al2O3 | 9 | 200 | 29a | 26.6 | 67.2 | THF: 32.8 | [ |
275 | 99.7 | 5.0 | THF: 92.3, Others: 2.7 | ||||
6 | 425 | 99.8 | 2.7 | THF: 92.6, 3B1OL: 0.1, Others: 4.6 | |||
γ-Al2O3 | 9 | 200 | 29a | 17.3 | 69.5 | THF: 30.5 | [ |
275 | 100 | 0.2 | THF: 99.3, Others: 0.5 | ||||
425 | 100 | 3.1 | THF: 91.8, Others: 5.1 | ||||
Y2Zr2O7 | 0.31 | 375 | 30 | 100 | 58.8 | 3B1OL: 23.8, 2B1OL: 4.4, THF: 3.7, GBL: 0.1, Propylene: 5.8, Others: 3.4 | [ |
Dy2Zr2O7 | 99.8 | 66.4 | 3B1OL: 20.6, 2B1OL: 4.7, THF: 3.0, 3GBL: 0.1, Propylene: 1.8, Others: 3.4 | [ | |||
Yb2O3 | 21.74 | 360 | 30 | 100 | 96.6 | Propylene: 0.7, THF: 0.1, Others: 2.5 | [ |
Bu4PBrb | 220 °C, N2, 0.5 mmol n-hexane, 0.05 mmol HBr, 0.5 mmol 1,4-BDO, 1.7 mmol catalyst, 2 h | 100 | 94 | THF: 5, Butanal: 1 | [ |
Table 12 Summary of vapor phase dehydration of 1,4-BDO to BD.
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||
---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | BD | others | |||
CeO2 | 6 | 275 | 29a | 6.3 | 87.4 | others: 12.6 | [ |
450 | 94.9 | 24.8 | 3B1OL: 25.9, THF: 7.6, Others: 41.7 | ||||
SiO2-Al2O3 | 9 | 200 | 29a | 26.6 | 67.2 | THF: 32.8 | [ |
275 | 99.7 | 5.0 | THF: 92.3, Others: 2.7 | ||||
6 | 425 | 99.8 | 2.7 | THF: 92.6, 3B1OL: 0.1, Others: 4.6 | |||
γ-Al2O3 | 9 | 200 | 29a | 17.3 | 69.5 | THF: 30.5 | [ |
275 | 100 | 0.2 | THF: 99.3, Others: 0.5 | ||||
425 | 100 | 3.1 | THF: 91.8, Others: 5.1 | ||||
Y2Zr2O7 | 0.31 | 375 | 30 | 100 | 58.8 | 3B1OL: 23.8, 2B1OL: 4.4, THF: 3.7, GBL: 0.1, Propylene: 5.8, Others: 3.4 | [ |
Dy2Zr2O7 | 99.8 | 66.4 | 3B1OL: 20.6, 2B1OL: 4.7, THF: 3.0, 3GBL: 0.1, Propylene: 1.8, Others: 3.4 | [ | |||
Yb2O3 | 21.74 | 360 | 30 | 100 | 96.6 | Propylene: 0.7, THF: 0.1, Others: 2.5 | [ |
Bu4PBrb | 220 °C, N2, 0.5 mmol n-hexane, 0.05 mmol HBr, 0.5 mmol 1,4-BDO, 1.7 mmol catalyst, 2 h | 100 | 94 | THF: 5, Butanal: 1 | [ |
Catalyst | Reaction condition | X (%) | GBL selectivity (%) | Ref. | |||
---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | H2 (mL/min) | ||||
Cu(12)/SiO2 | 2 | 250 | 45 | 17 | 86.7 | 95.8 | [ |
Na(1)-Ca(7)-Cu(12)/SiO2 | 97.0 | 93.6 | |||||
Cu(80)/SiO2 | 98.6a | 99 | |||||
Cu-Ba/SiO2 | 1 | 260 | — | 5b | ~100 | ~100 | [ |
Cu-Ca/SiO2 | ~100 | ~98 | |||||
Cu-Sr/SiO2 | ~100 | ~98 | |||||
Cu/SiO2 | 2 | 250 | 18 | — | ~99 | ~99 | [ |
Cu/MgO | ~60 | ~99 | |||||
Cu/MgO-Al2O3 | ~15 | ~99 | |||||
Cu-Zn-Al | 0.06 | 210 | — | 125c | 100 | 98.6 f | [ |
10Co3O4-20Cu-70MgO | 2 | ~200 | — | 40 | ~83 | ~95 | [ |
10Cr2O3-20Cu-70MgO | ~70 | ~80 | |||||
1ZnO-20Cu-79MgO | ~75 | ~95 | |||||
10Cu/CeO2-Al2O3 | — | 260 | — | 30 | 100 | 98 | [ |
3Au/TiO2d | 140 °C, 1.25 MPae, TBP solvent, 0.069 mL 1,4-BDO/mL of solvent, 8 h | 99 | 100 | [ | |||
3Au/SnO2d | 140 °C, 1.2 MPae, TBP solvent, 0.080 mL 1,4-BDO/ml of solvent, 2 h | 94 | 59 | [ | |||
5Au/SnO2d | 53 | 83 |
Table 13 Summary of the conversion of 1,4-BDO to GBL in a fixed-bed reactor.
Catalyst | Reaction condition | X (%) | GBL selectivity (%) | Ref. | |||
---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | H2 (mL/min) | ||||
Cu(12)/SiO2 | 2 | 250 | 45 | 17 | 86.7 | 95.8 | [ |
Na(1)-Ca(7)-Cu(12)/SiO2 | 97.0 | 93.6 | |||||
Cu(80)/SiO2 | 98.6a | 99 | |||||
Cu-Ba/SiO2 | 1 | 260 | — | 5b | ~100 | ~100 | [ |
Cu-Ca/SiO2 | ~100 | ~98 | |||||
Cu-Sr/SiO2 | ~100 | ~98 | |||||
Cu/SiO2 | 2 | 250 | 18 | — | ~99 | ~99 | [ |
Cu/MgO | ~60 | ~99 | |||||
Cu/MgO-Al2O3 | ~15 | ~99 | |||||
Cu-Zn-Al | 0.06 | 210 | — | 125c | 100 | 98.6 f | [ |
10Co3O4-20Cu-70MgO | 2 | ~200 | — | 40 | ~83 | ~95 | [ |
10Cr2O3-20Cu-70MgO | ~70 | ~80 | |||||
1ZnO-20Cu-79MgO | ~75 | ~95 | |||||
10Cu/CeO2-Al2O3 | — | 260 | — | 30 | 100 | 98 | [ |
3Au/TiO2d | 140 °C, 1.25 MPae, TBP solvent, 0.069 mL 1,4-BDO/mL of solvent, 8 h | 99 | 100 | [ | |||
3Au/SnO2d | 140 °C, 1.2 MPae, TBP solvent, 0.080 mL 1,4-BDO/ml of solvent, 2 h | 94 | 59 | [ | |||
5Au/SnO2d | 53 | 83 |
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | UOL | BD | Others | |||
CeO2a | 13.2 | 325 | 73b | 61.0 | 97.7 | — | 2.3c | [ |
Fe(III)-CeO2 | 44.1 | 98.6 | — | 1.4c | ||||
Co(II)-CeO2 | 54.1 | 97.8 | — | 2.2c | ||||
Ni(II)-CeO2 | 69.0 | 96.5 | — | 3.5c | ||||
Yb2O3 | 6.7 | 325 | 20 | 33.4 | 87.3 | — | 4.2 | [ |
Y2O3 | 33.5 | 85.9 | — | 8.3 | ||||
Pr6O11 | 4.4d | 12.1 | — | 40.3 | ||||
Sm2O3 | 3.1d | 16.6 | — | 33.9 | ||||
ZrO2 | 11.4 | 325 | 30 | 25.3 | 60.9 | 0 | 39.4 | [ |
375 | 71.4 | 41.7 | 3.9 | 54.4 | ||||
Yb2O3-ZrO2-800 | 7.35 | 200 | 30 | 83.9 | 94.7 | — | 5.3e | [ |
ZSM-5 (260) | 14.1 | 300 | 60f | >95 | 1Bol: 1.0, 2Bol: 0.3, 3B1OL: 8.7, 3B2OL: 2.3 | 60 | Propylene: 24, MEK: 1.8, MVK: 1.3 | [ |
Al-SBA-15 (102) | >95 | 1Bol: 1.1, 2Bol: 2.2, 3B1OL: 0.6 | 53 | Propylene: 39, MEK: 2.1, MVK: 0.1 | ||||
H-FER (130) | 1.39 | 300 | 50 | 100 | 3B1OL: ~10 | ~60 | Propylene: ~20, MEK: ~10 | [ |
Table 14 Conversion of 1,3-BDO to unsaturated alcohols (UOL) and BD in a fixed-bed reactor.
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | UOL | BD | Others | |||
CeO2a | 13.2 | 325 | 73b | 61.0 | 97.7 | — | 2.3c | [ |
Fe(III)-CeO2 | 44.1 | 98.6 | — | 1.4c | ||||
Co(II)-CeO2 | 54.1 | 97.8 | — | 2.2c | ||||
Ni(II)-CeO2 | 69.0 | 96.5 | — | 3.5c | ||||
Yb2O3 | 6.7 | 325 | 20 | 33.4 | 87.3 | — | 4.2 | [ |
Y2O3 | 33.5 | 85.9 | — | 8.3 | ||||
Pr6O11 | 4.4d | 12.1 | — | 40.3 | ||||
Sm2O3 | 3.1d | 16.6 | — | 33.9 | ||||
ZrO2 | 11.4 | 325 | 30 | 25.3 | 60.9 | 0 | 39.4 | [ |
375 | 71.4 | 41.7 | 3.9 | 54.4 | ||||
Yb2O3-ZrO2-800 | 7.35 | 200 | 30 | 83.9 | 94.7 | — | 5.3e | [ |
ZSM-5 (260) | 14.1 | 300 | 60f | >95 | 1Bol: 1.0, 2Bol: 0.3, 3B1OL: 8.7, 3B2OL: 2.3 | 60 | Propylene: 24, MEK: 1.8, MVK: 1.3 | [ |
Al-SBA-15 (102) | >95 | 1Bol: 1.1, 2Bol: 2.2, 3B1OL: 0.6 | 53 | Propylene: 39, MEK: 2.1, MVK: 0.1 | ||||
H-FER (130) | 1.39 | 300 | 50 | 100 | 3B1OL: ~10 | ~60 | Propylene: ~20, MEK: ~10 | [ |
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | 4H2B | MEK | AcH | AcMe | |||
CuO | 28.3 | 240 | 30a | 40.8 | 55.9 | 6.1 | 2.7 | 17.8 | [ |
Cu/ZnO | 66.3 | 55.5 | 19.9 | 1.7 | 9.2 | ||||
Cu/Al2O3 | 98.4 | 2.6 | 51.5 | 3.6 | 15.5 | ||||
CuO/ZrO2 | 99.4 | 7.1 | 50.1 | 3.9 | 19.6 | ||||
Cu/MgO | 89.8 | 22.8 | 22.0 | 7.3 | 28.6 | ||||
PtSb2/ACb | 70 °C, 2 MPa O2, aq. 1,3-BDO (10 g/L), 0.2g catalyst, 14 h | 95.5 | 82.3c | 3-HBAD: 0.3, 2-BA: 6.7, 4-HYBO: 5.7, Others: 5.0 | [ |
Table 15 Summary of dehydrogenation of 1,3-BDO.
Catalyst | Reaction conditions | X (%) | Selectivity (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
WHSV (h‒1) | T (°C) | N2 (mL/min) | 4H2B | MEK | AcH | AcMe | |||
CuO | 28.3 | 240 | 30a | 40.8 | 55.9 | 6.1 | 2.7 | 17.8 | [ |
Cu/ZnO | 66.3 | 55.5 | 19.9 | 1.7 | 9.2 | ||||
Cu/Al2O3 | 98.4 | 2.6 | 51.5 | 3.6 | 15.5 | ||||
CuO/ZrO2 | 99.4 | 7.1 | 50.1 | 3.9 | 19.6 | ||||
Cu/MgO | 89.8 | 22.8 | 22.0 | 7.3 | 28.6 | ||||
PtSb2/ACb | 70 °C, 2 MPa O2, aq. 1,3-BDO (10 g/L), 0.2g catalyst, 14 h | 95.5 | 82.3c | 3-HBAD: 0.3, 2-BA: 6.7, 4-HYBO: 5.7, Others: 5.0 | [ |
|
[1] | Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 83-108. |
[2] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[3] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[4] | Wei Yu, Jiaoqi Gao, Lun Yao, Yongjin J. Zhou. Bioconversion of methanol to 3-hydroxypropionate by engineering Ogataea polymorpha [J]. Chinese Journal of Catalysis, 2023, 46(3): 84-90. |
[5] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[6] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[7] | Xuefei Weng, Shuangli Yang, Ding Ding, Mingshu Chen, Huilin Wan. Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2001-2009. |
[8] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[9] | Chunpeng Wang, Zhe Wang, Shanjun Mao, Zhirong Chen, Yong Wang. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 928-955. |
[10] | Hui Chen, Bo Zhang, Xiao Liang, Xiaoxin Zou. Light alloying element-regulated noble metal catalysts for energy-related applications [J]. Chinese Journal of Catalysis, 2022, 43(3): 611-635. |
[11] | Tao Zhang, Xiaochi Han, Nhat Truong Nguyen, Lei Yang, Xuemei Zhou. TiO2-based photocatalysts for CO2 reduction and solar fuel generation [J]. Chinese Journal of Catalysis, 2022, 43(10): 2500-2529. |
[12] | Xiaoling Liu, Lei Chen, Hongzhong Xu, Shi Jiang, Yu Zhou, Jun Wang. Straightforward synthesis of beta zeolite encapsulated Pt nanoparticles for the transformation of 5-hydroxymethyl furfural into 2,5-furandicarboxylic acid [J]. Chinese Journal of Catalysis, 2021, 42(6): 994-1003. |
[13] | Zhifeng Dai, Yongquan Tang, Fei Zhang, Yubing Xiong, Sai Wang, Qi Sun, Liang Wang, Xiangju Meng, Leihong Zhao, Feng-Shou Xiao. Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO2 under mild conditions [J]. Chinese Journal of Catalysis, 2021, 42(4): 618-626. |
[14] | Renyang Zheng, Zaiku Xie. Full life cycle characterization strategies for spatiotemporal evolution of heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2021, 42(12): 2141-2148. |
[15] | Jinghua An, Yehong Wang, Zhixin Zhang, Jian Zhang, Martin Gocyla, Rafal E. Dunin-Borkowski, Feng Wang. Linear-regioselective hydromethoxycarbonylation of styrene using Ru-clusters/CeO2 catalyst [J]. Chinese Journal of Catalysis, 2020, 41(6): 963-969. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||