Chinese Journal of Catalysis ›› 2024, Vol. 60: 68-106.DOI: 10.1016/S1872-2067(24)60013-6
• Reviews • Previous Articles Next Articles
Wangyan Goua,b, Yichen Wanga,b, Mingkai Zhangc, Xiaohe Tana, Yuanyuan Maa,b,*(), Yongquan Qub,*(
)
Received:
2023-12-08
Accepted:
2024-03-15
Online:
2024-05-18
Published:
2024-05-20
Contact:
E-mail: About author:
Yuanyuan Ma (School of Chemistry and Chemical Engineering, Northwestern Polytechnical University) is a professor at the School of Chemistry and Chemical Engineering, Northwestern Polytechnical University. She received her B.S. in Materials Science and Engineering from Nanjing University in 2001 and Ph.D from the University of California, Davis in 2012. Her current research focuses on the design of highly performed electrocatalysts for water splitting and organic transformations as well as the reaction mechanisms for electrochemical reactions.Supported by:
Wangyan Gou, Yichen Wang, Mingkai Zhang, Xiaohe Tan, Yuanyuan Ma, Yongquan Qu. A review on fundamentals for designing stable ruthenium-based catalysts for the hydrogen and oxygen evolution reactions[J]. Chinese Journal of Catalysis, 2024, 60: 68-106.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60013-6
Fig. 2. Representative milestone research work of Ru-based catalysts in HER and OER [40,41,43?-45,109,167,183,187,188]. Reprinted with permission from Ref. [40]. Copyright 1998, Elsevier. Reprinted with permission from Ref. [41]. Copyright 2018, John Wiley and Sons. Reprinted with permission from Ref. [43]. Copyright 2015, American Chemical Society. Reprinted with permission from Ref. [44]. Copyright 2016, Elsevier. Reprinted with permission from Ref. [45]. Copyright 2019, John Wiley and Sons. Reprinted with permission from Ref. [109]. Copyright 2017, Springer Nature. Reprinted with permission from Ref. [167]. Copyright 2023, Springer Nature. Reprinted with permission from Ref. [183]. Copyright 2020, Springer Nature. Reprinted with permission from Ref. [187]. Copyright 2021, Springer Nature. Reprinted with permission from Ref. [188]. Copyright 2023, Springer Nature.
Fig. 3. (a) Chemical processes in HER under acidic and alkaline conditions. (b) Relationship between the exchange current density (j0) and hydrogen adsorption free energy under the assumption of the Langmuir adsorption model. Reprinted with permission from Ref. [58]. Copyright 2022, John Wiley and Sons. (c) Volcano plot of the relationship between the exchange current density (j0) and the free energy of hydrogen adsorption (ΔGH*) for the surfaces of Ru and other metals. Reprinted with permission from Ref. [61]. Copyright 2021, Springer Nature.
Fig. 4. (a) Schematic illustration of the proposed AEM pathway of OER in alkaline media on an active metal site. (b-d) Schematic illustrations of three alternative pathways of LOM in alkaline media with different catalytic centers. (b) Oxygen-vacancy-site mechanism (OVSM). (c) Single-metal-site mechanism (SMSM). (d) Dual-metal-site mechanism (DMSM). Reprinted with permission from Ref. [65]. Copyright 2021, Royal Society of Chemistry.
Catalyst | Electrolyte | η10 (mV) | Tafel slope (mV dec-1) | Stability | Ref. | ||
---|---|---|---|---|---|---|---|
CA/retention (mA cm-2@h@%) | CP/decay (mV@h@mV) | CV cycles/retention (cycles @%) | |||||
Ru NRs/TiN | 1.0 mol L-1 KOH | 25 | 27.08 | — | ~30@50@41 | 10000 | [ |
Ru-NiCo2S4-x | 1.0 mol L-1 KOH | 32 | 61.3 | 20@12@100 | — | 1000 | [ |
Ru SAs-SnO2/C | 1.0 mol L-1 KOH | 10 | 25 | 10@27@100 | — | 3000 | [ |
Ru@MoO(S)3 | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 30/63 | 29/32 | 17@24@88 | — | 3000 | [ |
Ru/TiO2-V | 1.0 mol L-1 KOH | 34 | 35.4 | 300@200@100 (80 °C and 6 mol L-1 KOH) | — | — | [ |
RuFe@NF | 1.0 mol L-1 KOH | 28 | 63.39 | — | ~310@680@0 | — | [ |
Ru-G/CC | 1.0 mol L-1 KOH | 40 | 76 | 8@100@100 | — | — | [ |
RuxFeyP-NCs/CNF | 1.0 mol L-1 NaOH/0.5 mol L-1 H2SO4 | 16/66 | 40.31/43.33 | ~10@100@98 | — | — | [ |
Ru SAs/N-Mo2C NSs | 1.0 mol L-1 KOH | 43 | 38.67 | ~22@60@93.7 | — | — | [ |
RuO2-NiO/NF | 1.0 mol L-1 KOH | 18 | 27 | 20@100 | — | — | [ |
NiRu-MOF/NF | 1.0 mol L-1 KOH | 51 | 90 | ~30@24 | ~110@24@~40 | 5000 | [ |
Ru‐NCs/N‐GA‐900 | 1.0 mol L-1 KOH/1.0 mol L-1 HClO4 | 36/52 | 36.8 | — | ~150@40@50 | 10000 | [ |
RuNP@RuNx-OFC/NC | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 19/10 | 13.75/35.35 | 10@120@90 | — | 2000 | [ |
R-NiRu | 1.0 mol L-1 KOH | 16 | 40 | ~23@12@80 | — | 5000 | [ |
2DPC-RuMo | 1.0 mol L-1 KOH | 18 | 25 | 10@120@100 | — | 2000 | [ |
P,Mo-Ru@PC | 1.0 mol L-1 KOH | 21 | 21.7 | 10@10@100 | — | 5000 | [ |
S-RuP@NPSC-900 | 1.0 mol L-1 KOH | 92 | 90.23 | 800@10@98 | — | — | [ |
Ru-Ru2P@CNFs | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 14/11 | 24.5 | 6@11@83 | — | 3000 | [ |
fcc-RuCu HUNSs | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 26/25 | 40 | — | 25@5@25 | — | [ |
MoOx-Ru fcc | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 34/26 | 14.5 | — | 34@100@~16 | — | [ |
RuΔc→h/C | 0.5 mol L-1 KOH | 97 (50 mA cm-2) | 51 | — | ~45@12@5 | 5000 | [ |
RuxSe-400 | 1.0 mol L-1 KOH | 45 | 31.4 | 10@18@80 | — | 3000 | [ |
Ru/r-TiO2 | 1.0 mol L-1 KOH | 15 | 49 | 10@10@~90 | — | 1000 | [ |
RuO2-300Ar | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 17/16 | 35 | — | ~220@300 | — | [ |
Ru1CoP/CDs-1000 | 1 mol L-1 KOH/0.5 mol L-1 H2SO4 | 51/49 | 73.4/51.6 | 10@20 | — | 2000 | [ |
PtRu/mCNTs | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4/1 mol L-1 PBS | 15/28/17 | 33.5 | — | 25@48 | 3000 | [ |
Ru/p-NC | 1.0 mol L-1 KOH | 10 | 17 | 14@24@93 | — | 3000 | [ |
CNT-V-Fe-Ru | 1.0 mol L-1 KOH/0.5M H2SO4 | 38/64 | 41/51 | — | 64@20@11 | — | [ |
Mo2C-Ru/C | 1.0 mol L-1 KOH | 22 | 25 | 10@100 | — | — | [ |
Ru@Ti3C2Tx-VC | 1.0 mol L-1 KOH | 35 | 32 | — | 40@40@10 | — | [ |
Ru@MWCNT | 1 mol L-1 KOH/0.5 mol L-1 H2SO4 | 17/13 | 27/27 | 20@50 | — | 10000 | [ |
Ru-Fe3O4/C | 1.0 mol L-1 KOH | 11 | 25 | 56@32@95.5 | — | 5000 | [ |
Cu-Ru/RuSe2 NSs/C | 1.0 mol L-1 KOH | 23 | 58.5 | — | — | 5000 | [ |
Ru@N-CNFs | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 17/16 | 28.5/31.8 | 15@17@80 | — | 2000 | [ |
Ru/P-TiO2 | 1.0 mol L-1 KOH | 27 | 28.3 | 9@23@78 | — | 2000 | [ |
Ru-OC60-300 | 1.0 mol L-1 KOH | 4.6 | 24.7 | — | 4.6@50@13.3 | 3000 | [ |
Table 1 Summary of representative Ru-based electrocatalysts toward HER.
Catalyst | Electrolyte | η10 (mV) | Tafel slope (mV dec-1) | Stability | Ref. | ||
---|---|---|---|---|---|---|---|
CA/retention (mA cm-2@h@%) | CP/decay (mV@h@mV) | CV cycles/retention (cycles @%) | |||||
Ru NRs/TiN | 1.0 mol L-1 KOH | 25 | 27.08 | — | ~30@50@41 | 10000 | [ |
Ru-NiCo2S4-x | 1.0 mol L-1 KOH | 32 | 61.3 | 20@12@100 | — | 1000 | [ |
Ru SAs-SnO2/C | 1.0 mol L-1 KOH | 10 | 25 | 10@27@100 | — | 3000 | [ |
Ru@MoO(S)3 | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 30/63 | 29/32 | 17@24@88 | — | 3000 | [ |
Ru/TiO2-V | 1.0 mol L-1 KOH | 34 | 35.4 | 300@200@100 (80 °C and 6 mol L-1 KOH) | — | — | [ |
RuFe@NF | 1.0 mol L-1 KOH | 28 | 63.39 | — | ~310@680@0 | — | [ |
Ru-G/CC | 1.0 mol L-1 KOH | 40 | 76 | 8@100@100 | — | — | [ |
RuxFeyP-NCs/CNF | 1.0 mol L-1 NaOH/0.5 mol L-1 H2SO4 | 16/66 | 40.31/43.33 | ~10@100@98 | — | — | [ |
Ru SAs/N-Mo2C NSs | 1.0 mol L-1 KOH | 43 | 38.67 | ~22@60@93.7 | — | — | [ |
RuO2-NiO/NF | 1.0 mol L-1 KOH | 18 | 27 | 20@100 | — | — | [ |
NiRu-MOF/NF | 1.0 mol L-1 KOH | 51 | 90 | ~30@24 | ~110@24@~40 | 5000 | [ |
Ru‐NCs/N‐GA‐900 | 1.0 mol L-1 KOH/1.0 mol L-1 HClO4 | 36/52 | 36.8 | — | ~150@40@50 | 10000 | [ |
RuNP@RuNx-OFC/NC | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 19/10 | 13.75/35.35 | 10@120@90 | — | 2000 | [ |
R-NiRu | 1.0 mol L-1 KOH | 16 | 40 | ~23@12@80 | — | 5000 | [ |
2DPC-RuMo | 1.0 mol L-1 KOH | 18 | 25 | 10@120@100 | — | 2000 | [ |
P,Mo-Ru@PC | 1.0 mol L-1 KOH | 21 | 21.7 | 10@10@100 | — | 5000 | [ |
S-RuP@NPSC-900 | 1.0 mol L-1 KOH | 92 | 90.23 | 800@10@98 | — | — | [ |
Ru-Ru2P@CNFs | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 14/11 | 24.5 | 6@11@83 | — | 3000 | [ |
fcc-RuCu HUNSs | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 26/25 | 40 | — | 25@5@25 | — | [ |
MoOx-Ru fcc | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 34/26 | 14.5 | — | 34@100@~16 | — | [ |
RuΔc→h/C | 0.5 mol L-1 KOH | 97 (50 mA cm-2) | 51 | — | ~45@12@5 | 5000 | [ |
RuxSe-400 | 1.0 mol L-1 KOH | 45 | 31.4 | 10@18@80 | — | 3000 | [ |
Ru/r-TiO2 | 1.0 mol L-1 KOH | 15 | 49 | 10@10@~90 | — | 1000 | [ |
RuO2-300Ar | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 17/16 | 35 | — | ~220@300 | — | [ |
Ru1CoP/CDs-1000 | 1 mol L-1 KOH/0.5 mol L-1 H2SO4 | 51/49 | 73.4/51.6 | 10@20 | — | 2000 | [ |
PtRu/mCNTs | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4/1 mol L-1 PBS | 15/28/17 | 33.5 | — | 25@48 | 3000 | [ |
Ru/p-NC | 1.0 mol L-1 KOH | 10 | 17 | 14@24@93 | — | 3000 | [ |
CNT-V-Fe-Ru | 1.0 mol L-1 KOH/0.5M H2SO4 | 38/64 | 41/51 | — | 64@20@11 | — | [ |
Mo2C-Ru/C | 1.0 mol L-1 KOH | 22 | 25 | 10@100 | — | — | [ |
Ru@Ti3C2Tx-VC | 1.0 mol L-1 KOH | 35 | 32 | — | 40@40@10 | — | [ |
Ru@MWCNT | 1 mol L-1 KOH/0.5 mol L-1 H2SO4 | 17/13 | 27/27 | 20@50 | — | 10000 | [ |
Ru-Fe3O4/C | 1.0 mol L-1 KOH | 11 | 25 | 56@32@95.5 | — | 5000 | [ |
Cu-Ru/RuSe2 NSs/C | 1.0 mol L-1 KOH | 23 | 58.5 | — | — | 5000 | [ |
Ru@N-CNFs | 1.0 mol L-1 KOH/0.5 mol L-1 H2SO4 | 17/16 | 28.5/31.8 | 15@17@80 | — | 2000 | [ |
Ru/P-TiO2 | 1.0 mol L-1 KOH | 27 | 28.3 | 9@23@78 | — | 2000 | [ |
Ru-OC60-300 | 1.0 mol L-1 KOH | 4.6 | 24.7 | — | 4.6@50@13.3 | 3000 | [ |
Fig. 6. (a) Schematic illustration of synthesis of Ru-G/CC. (b) High resolution TEM (HRTEM) images of Ru-G/CC. (c) Comparison of the LSV curves of the initial electrode and the one after chronopotentiometry test for 100 h in 1.0 mol L?1 KOH. (d) Chronopotentiometry test performed at an overpotential of 270 mV for 100 h. (e) Calculated ΔG of H* on the surface of Ru-G/CC, Ru (101) and Pt (111). (f) Electron localized function of the adsorbed H-atom on the active sites. (g) Total DOS plots of amorphous/crystalline Ru structure. Reprinted with permission from Ref. [96]. Copyright 2022, Elsevier.
Fig. 7. (a) Schematic illustration of synthesis of RuxFeyP-NCs/CNF. (b) Field emission scanning electron microscopy (FESEM) image of RuFeP-NCs/CNF. (c) Chronoamperometry curves of RuFeP-NCs/CNF at an overpotential of 60 mV for 100 h in 0.5 mol L?1 H2SO4. (d) Polarization curves of RuFeP-NCs/CNF before and after 100 h stability tests. (e) Chronoamperometry curves of the RuFeP-NCs/CNF tested at an overpotential of 60 mV vs. RHE for 100 h in 1.0 mol L?1 NaOH solution. Calculated adsorption free energy of H* (ΔGH*) (f) and OH*+H* (ΔGOH*+H*) (g) for various catalysts. (h) Possible and optimized adsorption configurations of OH* and H* on RuFeP-NCs/CNF. Reprinted with permission from Ref. [100]. Copyright 2021, Elsevier.
Fig. 8. (a) Schematic illustration of synthesis of RuNP@RuNx-OFC/NC. (b) HRTEM image of RuNP@RuNx-OFC/NC. LSV curves of RuNP@RuNx-OFC/NC, RuNP-RuNx/NC and Pt/C in 0.5 mol L?1 H2SO4 (c) and 1.0 mol L?1 KOH (d). Long-term chronoamperometric test of RuNP@RuNx-OFC/NC in 0.5 mol L?1 H2SO4 (e) and 1.0 mol L?1 KOH (f) at a current density of 10 mA cm-2 (inset: the LSV curves of RuNP@RuNx-OFC/NC before (red) and after (black) 2000 CV cycles). (g) Optimized structure of RuNP@RuN4-FC and RuNP-RuN4/PC. Color code: Ru gold, N blue and C gray. (h) DOS diagram of RuNP@RuN4-FC and RuNP-RuN4/PC. (i) Relationship of ΔGH* against the d band center (εd) of the Ru atoms in RuNP@RuN4-FC and RuNP-RuN4/PC. Reprinted with permission from Ref. [104]. Copyright 2022, Elsevier.
Fig. 9. (a) Schematic illustration of the synthesis and structure of the Ru@C2N electrocatalyst. (b) TEM image of Ru@C2N (insets: corresponding particle size distribution of the Ru nanoparticles (bottom) and atomic-resolution TEM image (top)). (c) LSV curves of Ru@C2N, Co@C2N, Ni@C2N, Pd@C2N, Pt@C2N and Pt/C electrocatalysts in 0.5 mol L?1 H2SO4 solution. (d) Durability test. The LSV curves of Pt/C and Ru@C2N were recorded before and after 10000 potential cycles in 0.5 mol L?1 H2SO4 solution from 0.2 to -0.1 V (versus RHE). Reprinted with permission from Ref. [109]. Copyright 2017, Springer Nature. (e) A schematic fabrication procedure of metal-composite-embedded hexagonal porous carbon nanosheets. (f) Comparison of the LSV curve of the 2DPC-RuMo nanosheets electrocatalysts for the 1st and 2000th cycles (inset: long-term HER stability measurement at a constant overpotential of 20 mV (with IR correction)). (g) Calculated hydrogen-adsorption free energy profile for different models. Reprinted with permission from Ref. [110]. Copyright 2020, John Wiley and Sons. (h) Stability of Ru@TiO2-V, Ru/CNTs, and Ru/TiO2-V for HER in 6 mol L?1 KOH at 80 °C. (i) Schematic display the unchanged metal diameter of Ru NPs confined into the lattice framework of TiO2 and after stability test for enabling outstanding stability of HER and Ru NPs supported on the surface of TiO2 undergo aggregation and dissociation for enabling poor stability of HER under harsh conditions. Reprinted with permission from Ref. [112]. Copyright 2022, Elsevier.
Fig. 10. (a) Synthesis procedure for Ru-OC60-300. (b) Chronopotentiometry curve of Ru-OC60-300/KB and Pt/C at a constant current density of 10 mA cm-2. (c) Calculated ΔGH* of Ru13-O3-C60-top, Ru13-O3-C60-inter, Ru13-O3-G-top, and Ru13-O3-G-inter. (d) Charge differential density map of Ru13-O3-C60 and Ru13-O3-G. Cyan and yellow colors represent electron decrease and increase, respectively. (e) Energy diagram of Volmer-Tafel route for Ru13-O3-C60. Reprinted with permission from Ref. [119]. Copyright 2023, American Chemical Society. (f) Schematic synthesis processes and structure of Ru NRs/TiN catalyst. (g) LSV curves with before and after 10000 potential cycles of Ru NRs/TiN, Ru NRs/C and Pt/C in 1.0 mol L-1 KOH solution (inset: 50 h chronopotentiometry test). (h) Charge density difference of Ru/TiN. Cyan and yellow colors represent negative and positive isosurface, respectively. The value of the isosurface is 0.1 e bohr-3. (i) Calculated Gibbs free energy of atomic hydrogen adsorption on Ru/TiN, Ru (100), and Ru (-120) slabs. (j) Hydrogen adsorption configuration and the corresponding ΔGH* of Ru/TiN. Reprinted with permission from Ref. [121]. Copyright 2022, Elsevier.
Fig. 11. (a) Crystal models of the temperature-induced phase transformation. LSV curves (b) and Stability (c) of MoOx-Ru fcc, MoOx-Ru hcp, Ru/C and Pt/C in 1 mol L?1 KOH. (d) Distribution map of formation energy for metal Ru fcc phase and hcp phase in the condition of bulk, facets (fcc_111 and hcp_101, respectively), and MoOx modification. (e) Crystal orbital Hamilton population (COHP) curves for Ru-H adsorption bonds on Ru(111) surface in fcc phase and corresponding projected DOS diagram. The Fermi level is set at zero. Projected density of states (PDOS) of 4dz2 orbitals of Ru atoms on the surface of Ru without and with modification with MoOx, as well as the corresponding partial d-band center (εd) relative to the Fermi levels in fcc phase (f) and hcp phase (g), respectively. Gibbs free energy diagrams for the adsorption of H* (h) and OH* (i) on the surface of Ru without and with the modification of MoOx. Reprinted with permission from Ref. [131]. Copyright 2022, American Chemical Society.
Fig. 12. (a) A schematic diagram of phase-transition by atom slippage on the Ruccp(111) plane, in which the “A,” “B,” and “C” planes represented in light green, orange, and green. (b) The lattice distance of Ruccp(111) between the virtual horizontal line and Ruccp(111) (or Ruhcp(002)) orientation. (c) High-temperature XRD (HT-XRD) patterns of ccp/C heated to temperatures in the range of 200-500 °C under an Ar atmosphere. The black and red vertical lines representing the ccp (JCPDS# 88-2333) and hcp (JCPDS# 06-0663) Ru references. (d) Comparison of the LSV curve of the RuΔc→h/C electrocatalysts for the 1st and 5000th cycles (inset: HER stability measurement). (e) Schematic diagram describing different mechanisms of RuCX formation at RuΔc→h/C (top) and RuΔhcp/C (bottom). (f) Average H-binding free energy (ΔGH*) for each surface model. (g) Schematic diagram explaining the atomic-level bifunctional mechanism of the RuCX surface. Reprinted with permission from Ref. [132]. Copyright 2021, John Wiley and Sons.
Fig. 13. (a) Schematic illustration of the synthesis of Ru/r-TiO2 and Ru/TiO2 catalysts. (b) LSV curves of Ru/r-TiO2, Ru/TiO2, Pt/C, Ru/C, Ti(Ⅲ) oxide, TiO2 and GC electrocatalysts in 1.0 mol L?1 KOH solution. (c) Stability of Ru/r-TiO2 by 1000 potential cycles between -50 and 10 mV at 5 mV s-1 (inset: the stability of catalysts at a constant potential of 15 mV for 10 h). (d) Charge density differences for Ru(0001)/TiO2 (up) and Ru(0001)/r-TiO2 (down) interfaces. The yellow region represents charge accumulation, and the light blue region indicates charge depletion at the isosurface value of 0.01 e Bohr-3. (e) Free energy profiles for HER from water to H2 on different surfaces. (f) The enlarged view of OH*?adsorption on Ru(0001)/r-TiO2 and Ru(0001)/TiO2 interfaces. Green: Ru; grey: Ti; red: O; white: H. Reprinted with permission from Ref. [136]. Copyright 2021, Elsevier.
Fig. 14. (a) Schematic illustration of the synthesis of Ru SAs-SnO2/C. (b) LSV curves (iR compensated) of Ru SAs-SnO2/C, Ru/C, Pt/C, and SnO2/C electrocatalysts in 1.0 mol L-1 KOH at a scan rate of 5 mV s-1. (c) LSV curves of Ru SAs-SnO2/C electrocatalyst before and after 3000 CV cycles (inset: the chronoamperometry curve at -18 mV). (d) OH adsorption configurations on the Ru (001), Ru site on Ru SAs/SnO2 and Sn site on Ru SAs/SnO2, as well as corresponding binding energies. (e) Schematic showing of the mechanism of enhanced HER performance on Ru SAs-SnO2/C. Reprinted with permission from Ref. [138]. Copyright 2022, John Wiley and Sons.
Catalyst | Electrolyte | η10 (mV) | Tafel slope (mV dec-1) | Stability | Ref. | ||
---|---|---|---|---|---|---|---|
CA/Retention (mA cm-2 @h@%) | CP/decay (mV@h@mV) | CV cycles/ retention (cycles @%) | |||||
Ru/GDY | 0.5 mol L‒1 H2SO4 | 531 | 100 | 10@54@100 | — | 2000 | [ |
YZRO/AB | 0.5 mol L‒1 H2SO4 | 291 | 36.9 | — | 290@6@~25 | 2000 | [ |
PRPO-350 | 0.1 mol L‒1 HClO4 | 174 | 28.8 | — | 270@150@~63 | 2000 | [ |
W0.2Er0.1Ru0.7O2-δ | 0.5 mol L‒1 H2SO4 | 168 | 66.8 | — | 170@500@83 | — | [ |
12Ru/MnO2 | 0.1 mol L‒1 HClO4 | 161 | 29.4 | — | 161@200@169 | — | [ |
Ru/NiFe2+Fe-LDH | 1 mol L‒1 KOH | 194 | 36 | — | 290 (100 mA cm-2)@100@16 | — | [ |
RuO2/D-TiO2 | 0.5 mol L‒1 H2SO4 | 180 | 43 | — | 270 (200 mA cm-2)@100@16 | — | [ |
YSRO-15 | 0.5 mol L‒1 H2SO4 | 264 | 44.8 | — | 260@28 | — | [ |
Ru@IrOx | 0.05 mol L‒1 H2SO4 | 282 | 69.1 | -@24@90 | — | — | [ |
Ru SAs/AC-FeCoNi | 1 mol L‒1 KOH | 205 | 40 | 10@48@100 | — | — | [ |
S-RuFeOx | 0.1 mol L‒1 HClO4 | 187 | 40 | — | 170 (1 mA cm-2)@50 @35 | 5000 | [ |
RuMn | 0.5 mol L‒1 H2SO4 | 270 | — | — | 270@720@100 | 20000 | [ |
Ru1Ir1Ox | 0.5 mol L‒1 H2SO4 | 204 | 71.3 | — | 270 (100 mA cm-2)@110 | 1000 | [ |
RuNi2©G-250 | 0.5 mol L‒1 H2SO4 | 227 | 65 | — | 270@24 | — | [ |
Sr1.7Ru5Ir1O13.7 | 0.5 mol L‒1 H2SO4 | 190 | 39 | — | 180@1500@43 | — | [ |
PtCo-RuO2/C | 0.1 mol L‒1 HClO4 | 212.6 | 48.5 | — | 270@20@80 | — | [ |
Sr0.95Na0.05RuO3 | 0.1 mol L‒1 HClO4 | 160 | — | — | — | 20 | [ |
Ru-N-C | 0.5 mol L‒1 H2SO4 | 267 | 52.6 | 11@30@95 | — | 1000 | [ |
Ni-RuO2 | 0.1 mol L‒1 HClO4 | 214 | 42.6 | — | 220@200 | — | [ |
Re0.06Ru0.94O2 | 0.1 mol L‒1 HClO4 | 190 | 45.5 | — | 190@200@50 | — | [ |
Nb0.1Ru0.9O2 | 0.5 mol L‒1 H2SO4 | 204 | 47.9 | — | 770 (200 mA cm-2)@360 | — | [ |
RuIr-NC | 0.05 mol L‒1 H2SO4 | 165 | — | — | 165 (1 mA cm-2)@122 | — | [ |
Ru5W1Ox | 0.5 mol L‒1 H2SO4 | 235 | — | — | 235@550 | 10000 | [ |
Y2Ru2-xIrxO7 | 0.1 mol L‒1 HClO4 | 220 | 47.56 | — | 500@2000 | — | [ |
CaCu3Ru4O12 | 0.5 mol L‒1 H2SO4 | 171 | 40 | — | 171@24@21 | — | [ |
Cr0.6Ru0.4O2 | 0.5 mol L‒1 H2SO4 | 178 | 58 | — | 178@10 | 10000 | [ |
RuMn NSBs-300 | 0.5 mol L‒1 H2SO4/1 mol L‒1 KOH | 226/222 | — | — | 230@122 | — | [ |
RuRh@(RuRh)O2 | 0.1 mol L‒1 HClO4 | 245 | 51.2 | — | 270@2.22 | — | [ |
Ni-Ru@RuOx-HL | 0.5 mol L‒1 H2SO4 | 184 | 54 | — | 184@30 | — | [ |
Au@Pt@RuOx | 0.1 mol L‒1 HClO4 | 215 | 60.1 | — | 220@40 | — | [ |
RuOCl@MnOx | 0.5 mol L‒1 H2SO4 | 228 | 43 | — | 228@280@50 | — | [ |
a/c-RuO2 | 0.1 mol L‒1 HClO4 | 205 | 48.6 | — | 240@60 | — | [ |
HRO | 0.1 mol L‒1 HClO4 | 215 | 36.86 | — | 270 (1 mA cm-2)@60 | 1000 | [ |
CaCu3Ru4O12 | 1 mol L‒1 H2SO4 | 320 | 59 | — | — | 100 | [ |
RuIr@CoNC | 0.5 mol L‒1 H2SO4 | 223 | 45 | — | 230@40@90 | — | [ |
NC@Vo·-RuO2/CNTs-350 | 0.5 mol L‒1 H2SO4 | 170 | 38.9 | — | 170@900 | 2000 | [ |
Y2MnRuO7 | 0.5 mol L‒1 H2SO4 | 260 | 48 | — | 270@45 | 2000 | [ |
Table 2 Summary of representative Ru-based electrocatalysts toward OER.
Catalyst | Electrolyte | η10 (mV) | Tafel slope (mV dec-1) | Stability | Ref. | ||
---|---|---|---|---|---|---|---|
CA/Retention (mA cm-2 @h@%) | CP/decay (mV@h@mV) | CV cycles/ retention (cycles @%) | |||||
Ru/GDY | 0.5 mol L‒1 H2SO4 | 531 | 100 | 10@54@100 | — | 2000 | [ |
YZRO/AB | 0.5 mol L‒1 H2SO4 | 291 | 36.9 | — | 290@6@~25 | 2000 | [ |
PRPO-350 | 0.1 mol L‒1 HClO4 | 174 | 28.8 | — | 270@150@~63 | 2000 | [ |
W0.2Er0.1Ru0.7O2-δ | 0.5 mol L‒1 H2SO4 | 168 | 66.8 | — | 170@500@83 | — | [ |
12Ru/MnO2 | 0.1 mol L‒1 HClO4 | 161 | 29.4 | — | 161@200@169 | — | [ |
Ru/NiFe2+Fe-LDH | 1 mol L‒1 KOH | 194 | 36 | — | 290 (100 mA cm-2)@100@16 | — | [ |
RuO2/D-TiO2 | 0.5 mol L‒1 H2SO4 | 180 | 43 | — | 270 (200 mA cm-2)@100@16 | — | [ |
YSRO-15 | 0.5 mol L‒1 H2SO4 | 264 | 44.8 | — | 260@28 | — | [ |
Ru@IrOx | 0.05 mol L‒1 H2SO4 | 282 | 69.1 | -@24@90 | — | — | [ |
Ru SAs/AC-FeCoNi | 1 mol L‒1 KOH | 205 | 40 | 10@48@100 | — | — | [ |
S-RuFeOx | 0.1 mol L‒1 HClO4 | 187 | 40 | — | 170 (1 mA cm-2)@50 @35 | 5000 | [ |
RuMn | 0.5 mol L‒1 H2SO4 | 270 | — | — | 270@720@100 | 20000 | [ |
Ru1Ir1Ox | 0.5 mol L‒1 H2SO4 | 204 | 71.3 | — | 270 (100 mA cm-2)@110 | 1000 | [ |
RuNi2©G-250 | 0.5 mol L‒1 H2SO4 | 227 | 65 | — | 270@24 | — | [ |
Sr1.7Ru5Ir1O13.7 | 0.5 mol L‒1 H2SO4 | 190 | 39 | — | 180@1500@43 | — | [ |
PtCo-RuO2/C | 0.1 mol L‒1 HClO4 | 212.6 | 48.5 | — | 270@20@80 | — | [ |
Sr0.95Na0.05RuO3 | 0.1 mol L‒1 HClO4 | 160 | — | — | — | 20 | [ |
Ru-N-C | 0.5 mol L‒1 H2SO4 | 267 | 52.6 | 11@30@95 | — | 1000 | [ |
Ni-RuO2 | 0.1 mol L‒1 HClO4 | 214 | 42.6 | — | 220@200 | — | [ |
Re0.06Ru0.94O2 | 0.1 mol L‒1 HClO4 | 190 | 45.5 | — | 190@200@50 | — | [ |
Nb0.1Ru0.9O2 | 0.5 mol L‒1 H2SO4 | 204 | 47.9 | — | 770 (200 mA cm-2)@360 | — | [ |
RuIr-NC | 0.05 mol L‒1 H2SO4 | 165 | — | — | 165 (1 mA cm-2)@122 | — | [ |
Ru5W1Ox | 0.5 mol L‒1 H2SO4 | 235 | — | — | 235@550 | 10000 | [ |
Y2Ru2-xIrxO7 | 0.1 mol L‒1 HClO4 | 220 | 47.56 | — | 500@2000 | — | [ |
CaCu3Ru4O12 | 0.5 mol L‒1 H2SO4 | 171 | 40 | — | 171@24@21 | — | [ |
Cr0.6Ru0.4O2 | 0.5 mol L‒1 H2SO4 | 178 | 58 | — | 178@10 | 10000 | [ |
RuMn NSBs-300 | 0.5 mol L‒1 H2SO4/1 mol L‒1 KOH | 226/222 | — | — | 230@122 | — | [ |
RuRh@(RuRh)O2 | 0.1 mol L‒1 HClO4 | 245 | 51.2 | — | 270@2.22 | — | [ |
Ni-Ru@RuOx-HL | 0.5 mol L‒1 H2SO4 | 184 | 54 | — | 184@30 | — | [ |
Au@Pt@RuOx | 0.1 mol L‒1 HClO4 | 215 | 60.1 | — | 220@40 | — | [ |
RuOCl@MnOx | 0.5 mol L‒1 H2SO4 | 228 | 43 | — | 228@280@50 | — | [ |
a/c-RuO2 | 0.1 mol L‒1 HClO4 | 205 | 48.6 | — | 240@60 | — | [ |
HRO | 0.1 mol L‒1 HClO4 | 215 | 36.86 | — | 270 (1 mA cm-2)@60 | 1000 | [ |
CaCu3Ru4O12 | 1 mol L‒1 H2SO4 | 320 | 59 | — | — | 100 | [ |
RuIr@CoNC | 0.5 mol L‒1 H2SO4 | 223 | 45 | — | 230@40@90 | — | [ |
NC@Vo·-RuO2/CNTs-350 | 0.5 mol L‒1 H2SO4 | 170 | 38.9 | — | 170@900 | 2000 | [ |
Y2MnRuO7 | 0.5 mol L‒1 H2SO4 | 260 | 48 | — | 270@45 | 2000 | [ |
Fig. 16. (a) Schematic illustration of the synthetic procedures of catalysts. (b) LSV curves of various electrocatalysts (C-RuO2, C-IrO2, and Ir/C represent the commercial RuO2, IrO2, and Ir/C, respectively). (c) Chronopotentiometry curves of Ru1Ir1Ox. (d) S-number for various electrocatalysts at 10 mA cm-2geo. (e) The DOS curves of IrOx, RuOx, and Ru1Ir1Ox. (f) Charge density difference of IrOx and Ru1Ir1Ox (Blue and yellow colors represent charge depletion and accumulation, respectively). (g) The Gibbs free energy diagram of IrOx, RuOx, and Ru1Ir1Ox. Reprinted with permission from Ref. [149]. Copyright 2021, John Wiley and Sons.
Fig. 17. (a) Schematic illustration of the synthetic process of RuNi2?G-250. “T” represents the different oxidation temperatures, and “X” represents the molar ratios of Ru and Ni precursors. (b) LSV curves of RuNi2?G-250 in comparison with other catalysts treated at different oxidation temperatures and commercial RuO2 at the same mass loading of 0.32 mg cm-2. (c) Chronopotentiometric curve of RuNi2?G-250 supported on carbon fibers at a mass loading of 3 mg cm-2. (d) X-ray absorption near-edge structure (XANES) of Ru K-edge for RuNi2?G-250 supported on carbon fibers before and after 24 h stability testing. (e) The catalytical reaction circle and the active sites for interface Ru centers. The red, gray, white, and blue balls represent O, C, H, and Ru atoms, respectively. (f) The calculated overpotential (η) against the free energy of O* (ΔGO*) and HOO* (ΔGHOO*) on different active sites: a pristine RuO2 site, interface Ru centers, a Ru site under graphene or graphene oxide, and a Ru site adjacent to Ni (Ru adjacent to Ni); P1-P4 represent the graphene with different degrees of oxidation, and d1.5-d3.0 represent the different heights between graphene and RuO2. (g) Free energy profiles for the OER over RuO2 and interfacial Ru centers between RuO2 and graphene with an armchair edge at zero potential (U = 0). (h) Differential charge density at the interfacial Ru centers between RuO2 and graphene. Yellow and blue contours represent electron accumulation and depletion, respectively. The isovalue is set to be 0.004 a.u. Reprinted with permission from Ref. [151]. Copyright 2020, John Wiley and Sons.
Fig. 18. (a) SEM image of RuIr@CoNC catalysts. (b) CP curves of RuIr@CoNC recorded at a constant current density of 10 mA cm-2 in 0.5 mol L?1 H2SO4, 0.05 mol L?1 H2SO4, and PBS. (c) ICP-OES analysis of the dissolution of Ru, Ir, and Co of RuIr@CoNC during the OER electrolysis after different time intervals in 0.5 mol L?1 H2SO4. (d) Gibbs free-energy diagram on the flat and step surfaces, calculated at 1.23 V. (e) The Bader charge analysis of the flat and step surfaces. The green, blue, and red spheres represent Ru, Ir, and O atoms, respectively. (f) Calculated PDOS of Ru d-band on the flat and step surfaces. The dotted lines denote the d-band center. Reprinted with permission from Ref. [157]. Copyright 2021, American Chemical Society. (g) High-resolution TEM of RuO2/D-TiO2 (inset: a structural schematic for the composite catalyst). (h) Electron paramagnetic resonance (EPR) spectra of RuO2/D-TiO2, RuO2/C, and RuO2/TiO2. (i) CP measurements with different applied current densities. (j) Long-term stability tests at a constant current density of 200 mA cm-2 in a three-electrode electrolyzer. (k) Limiting potential diagram for AEM and LOM on model surfaces. Reprinted with permission from Ref. [158]. Copyright 2022, American Chemical Society.
Fig. 19. (a) Synthetic scheme of the Ru-UiO-67-bpydc catalyst (bpydc represents 2,2'-bipyridine-5,5'-dicarboxylic acid). (b) Initial LSV curves of Ru-UiO-67-bpydc and the LSV curves of catalysts after 1000 CV cycles. (c) Chronopotentiometric curves of Ru-UiO-67-bpydc at a current density of 10/50 mA cm-2 and RuO2 at a current density of 10 mA cm-2. (d) Crystal orbital Hamilton population of Ru-N and Ru-OOH bond in Ru-UiO-67-bpydc and -COHP of Ru-O and Ru-OOH in RuO2 catalysts. (e) Gibbs free energy illustration by Ru-UiO-67-bpydc and RuO2 catalysts during the OER process through the AEM or LOM pathways. (f) The transformation of RuO2 to RuO42- during the acidic OER process via the LOM pathway. (g) The stability of the Ru intermediate in the MOF-anchored Ru oxide during the acidic OER through the LOM pathway. Reprinted with permission from Ref. [162]. Copyright 2023, Elsevier.
Fig. 20. (a) LSV curves of RuMn NSBs with a 85% iR-correction after 1000, 5000, 10000, and 20000 cycles (inset: the overpotential at 10 mA cm-2). (b) Ru and Mn dissolution. (c) The chronopotentiometry curve of RuMn NSBs and commercial RuO2 at 10 mA cm-2. (d) Schematic of surface reconstruction of RuMn NSBs and dissolution of unstable Ru-based alloys in acidic media during CV cycles. (e) Durability-binding energy (Ru) relationships found in this study. Reprinted with permission from Ref. [166]. Copyright 2022, John Wiley and Sons.
Fig. 21. (a) Schematic illustration of the synthesis of Ni-RuO2. (b) LSV curves of Ni-RuO2, RuO2 and Com-RuO2. (c) Stability tests of Ni-RuO2, RuO2 and Com-RuO2. (d) Calculated free energy of OER via AEM on surfaces of RuO2 (110) and Ni-RuO2 (110) under an electrode potential of 1.70?V. (e) Calculated energies for the structural degradation of the surfaces of RuO2 (110) and Ni-RuO2 (110). Reprinted with permission from Ref. [167]. Copyright 2023, Springer Nature.
Fig. 22. (a) Chronopotentiometry curves of YSRO-15 and RuO2 catalysts at a current density of 10 mA cmgeo-2. (b) Surface and bulk atomic percentages of the YSRO-15 catalyst after the stability test, observed from in-depth XPS spectra. (c) Schematic illustrations of different RuO6 along with the splitting of Ru 4d orbitals. (d) PDOS diagrams of Ru 4d and O 2p orbitals in pristine Y2Ru2O7 (top) and the 12.5 at% Sr-substituted Y1.75Sr0.25Ru2O7 (bottom) model. Calculated free energy diagrams of the OER pathway for the Y2Ru2O7 (e) and Y1.75Sr0.25Ru2O7 (f) models. Reprinted with permission from Ref. [172]. Copyright 2021, American Chemical Society.
Fig. 23. (a) Crystalline structure of Y2Ru2O7 with Ir doping. (b) LSV curves (inset: LSV curves of pyrochlores with different Ru/Ir ratios). (c) Chronpotentionary measurement of Y2Ru1.2Ir0.8O7 and commercial RuO2 at 10 mA cm-2 respectively. (d) Adsorption of oxygen intermediates at Ir site. (e) Free energy diagram of Ru in Y2Ru1.2Ir0.8O7 and RuO2. (f) Free energy diagram of Ir in Y2Ru1.2Ir0.8O7 and IrO2. Reprinted with permission from Ref. [176]. Copyright 2022, John Wiley and Sons.
Fig. 24. (a) Schematic route for synthesis of W0.2Er0.1Ru0.7O2-δ nanosheets. (b) Extended X-ray absorption fine structure (EXAFS) spectra of Ru K-edge for Ru foil, C-RuO2, W0.2Er0.1Ru0.7O2-δ, and RuO2?δ. (c) LSV curves of W0.2Er0.1Ru0.7O2-δ, Er0.1Ru0.9O2-δ, W0.2Ru0.8O2-δ, and RuO2-δ nanosheets. (d) Stability of W0.2Er0.1Ru0.7O2-δ nanosheets in 0.5 mol L-1 H2SO4. (e) ICP analysis of the spent W0.2Er0.1Ru0.7O2-δ catalysts after 500 h operation in acid. (f) Schematic diagrams of rigid band models for RuO2 and W0.2Er0.1Ru0.7O2-δ-1 in acidic OER. (g) Calculated energy for the formation of VO in different positions of RuO2, W0.2Ru0.8O2-δ-1, Er0.1Ru0.9O2-δ-1, and W0.2Er0.1Ru0.7O2-δ-1. (h) Calculated energy barriers diagram of W0.2Er0.1Ru0.7O2-δ-1. Reprinted with permission from Ref. [183]. Copyright 2020, Springer Nature.
Fig. 25. (a) Normalized LSV curves of MRuOx based on geometric areas. (b) Chronopotentiometry curve of SnRuOx operated at 100 mA cm-2 during the 250-h test. (c) DEMS signals of 32O2, 34O2 and 36O2 from the reaction products of MRu16Ox in H18O aqueous sulfuric acid electrolyte. The right part presented the variation of 16O: 18O ratio with Ru oxidation states of MRuOx. (d) The variation of apparent overpotential at 10 mA cm-2 with Ru oxidation states. (e) The variation trend of Ru K-edge absorption energy (E0) of SnRuOx and RuOx under different potentials. (f) Summary of the Ru-O bond length of SnRuOx and RuOx under various potentials. (g) The variation of It2g-p/Ieg-p with applied potentials for SnRuOx and RuOx. Reprinted with permission from Ref. [187]. Copyright 2023, Springer Nature.
Fig. 26. (a) Schematic illustration of the simplified OPM mechanism. (b) Electrocatalytic OER performance of MnO2, Ru/MnO2 and homemade RuO2 in 0.1 mol L?1 HClO4. (c) Chronopotentiometric response of the 12Ru/MnO2 catalyst in an H-type cell (inset photo) using carbon cloth as a current collector (inset: the chronopotentiometric response of 12Ru/MnO2 and RuO2 using gassy carbon as the current collector). Operando synchrotron FTIR spectra recorded in the potential range of 1.2-1.6 V versus RHE for 12Ru/MnO2 (d) and commercial RuO2 (e). (f) DEMS signals of O2 products for 12Ru/MnO2 in the electrolyte using H218O as the solvent during three times of LSV in the potential range of 1.17-1.72 V versus RHE, with a 10 mV s-1 scan rate. Reprinted with permission from Ref. [188]. Copyright 2021, Springer Nature.
Catalyst | Electrolyte | Potential (V@mA cm-2) | Stability (h) | Ref. |
---|---|---|---|---|
Ru-G/CC | 1.0 mol L‒1 KOH | 1.67@10 | — | [ |
Ru-NiCo2S4 | 1.0 mol L‒1 KOH | 1.46@10 | 24 | [ |
Ru SAs-SnO2/C | 1.0 mol L‒1 KOH | 1.49@10 | 27 | [ |
Ru@MoO(S)3 | 1.0 mol L‒1 KOH/0.5 mol L‒1 H2SO4 | 1.526@10/1.522@10 | 24/24 | [ |
RuFe@NF | 1.0 mol L‒1 KOH | 1.54@10 | 680 | [ |
RuxFeyP-NCs/CNF | 1.0 mol L‒1 NaOH | 1.6@10 | 10 | [ |
RuO2-NiO/NF | 1.0 mol L‒1 KOH | 1.43@10 | 2000 | [ |
RuNP@RuNx-OFC/NC | 1.0 mol L‒1 KOH | 1.337@10/1.615@100 | 50 | [ |
Ru-WO3 | 1.0 mol L‒1 KOH | 1.86@1000 | 100 | [ |
RuO2-300Ar | 1.0 mol L‒1 KOH/0.5 mol L‒1 H2SO4 | 1.45@10/1.54@100 | 300/300 | [ |
a/c-RuO2 | 0.5 mol L‒1 H2SO4 | 1.5210@10 | 20 | [ |
SrRuIr | 0.5 mol L‒1 H2SO4 | 1.5@1000 | 150 | [ |
Nb0.1Ru0.9O2 | 0.5 mol L‒1 H2SO4 | 1.69@1000 | 100 | [ |
Nd0.1RuOx/CC | 0.5 mol L‒1 H2SO4 | 1.455@10 | 50 | [ |
Ni-RuO2 | 0.1 mol L‒1 HClO4 | 1.78@500 | 1000 | [ |
PRPO-350 | 0.1 mol L‒1 HClO4 | 1.8@1140 | — | [ |
PtCo-RuO2/C | 0.1 mol L‒1 HClO4 | 2.0@4400 | 24 | [ |
RuO2/D-TiO2 | 0.5 mol L‒1 H2SO4 | 1.74@1500 | 6 | [ |
Y2Ru2-xIrxO7 | 0.1 mol L‒1 HClO4 | 1.645@100 | 150 | [ |
SnRuOx | 0.5 mol L‒1 H2SO4 | 1.565@1000 | 1300 | [ |
RuIr-NC | 0.05 mol L‒1 H2SO4 | 1.485@10 | 120 | [ |
RuMn NSBs-300 | 1.0 mol L‒1 KOH/0.5 mol L‒1 H2SO4 | 1.452@10/1.456@10 | 125 | [ |
YZRO/AB | 0.5 mol L‒1 H2SO4 | 1.65@340 | — | [ |
NC@Vo·-RuO2/CNTs-350 | 0.5 mol L‒1 H2SO4 | 1.45@10 | 1000 | [ |
Ru0.85Zn0.15O2-δ | 1.0 mol L‒1 KOH/0.5 mol L‒1 H2SO4 | 1.47@10/1.50@10 | 50 | [ |
Y2MnRuO7 | 0.1 mol L‒1 HClO4 | 1.75@1000 | 24 | [ |
Table 3 Summary of representative Ru-based electrocatalysts toward water splitting.
Catalyst | Electrolyte | Potential (V@mA cm-2) | Stability (h) | Ref. |
---|---|---|---|---|
Ru-G/CC | 1.0 mol L‒1 KOH | 1.67@10 | — | [ |
Ru-NiCo2S4 | 1.0 mol L‒1 KOH | 1.46@10 | 24 | [ |
Ru SAs-SnO2/C | 1.0 mol L‒1 KOH | 1.49@10 | 27 | [ |
Ru@MoO(S)3 | 1.0 mol L‒1 KOH/0.5 mol L‒1 H2SO4 | 1.526@10/1.522@10 | 24/24 | [ |
RuFe@NF | 1.0 mol L‒1 KOH | 1.54@10 | 680 | [ |
RuxFeyP-NCs/CNF | 1.0 mol L‒1 NaOH | 1.6@10 | 10 | [ |
RuO2-NiO/NF | 1.0 mol L‒1 KOH | 1.43@10 | 2000 | [ |
RuNP@RuNx-OFC/NC | 1.0 mol L‒1 KOH | 1.337@10/1.615@100 | 50 | [ |
Ru-WO3 | 1.0 mol L‒1 KOH | 1.86@1000 | 100 | [ |
RuO2-300Ar | 1.0 mol L‒1 KOH/0.5 mol L‒1 H2SO4 | 1.45@10/1.54@100 | 300/300 | [ |
a/c-RuO2 | 0.5 mol L‒1 H2SO4 | 1.5210@10 | 20 | [ |
SrRuIr | 0.5 mol L‒1 H2SO4 | 1.5@1000 | 150 | [ |
Nb0.1Ru0.9O2 | 0.5 mol L‒1 H2SO4 | 1.69@1000 | 100 | [ |
Nd0.1RuOx/CC | 0.5 mol L‒1 H2SO4 | 1.455@10 | 50 | [ |
Ni-RuO2 | 0.1 mol L‒1 HClO4 | 1.78@500 | 1000 | [ |
PRPO-350 | 0.1 mol L‒1 HClO4 | 1.8@1140 | — | [ |
PtCo-RuO2/C | 0.1 mol L‒1 HClO4 | 2.0@4400 | 24 | [ |
RuO2/D-TiO2 | 0.5 mol L‒1 H2SO4 | 1.74@1500 | 6 | [ |
Y2Ru2-xIrxO7 | 0.1 mol L‒1 HClO4 | 1.645@100 | 150 | [ |
SnRuOx | 0.5 mol L‒1 H2SO4 | 1.565@1000 | 1300 | [ |
RuIr-NC | 0.05 mol L‒1 H2SO4 | 1.485@10 | 120 | [ |
RuMn NSBs-300 | 1.0 mol L‒1 KOH/0.5 mol L‒1 H2SO4 | 1.452@10/1.456@10 | 125 | [ |
YZRO/AB | 0.5 mol L‒1 H2SO4 | 1.65@340 | — | [ |
NC@Vo·-RuO2/CNTs-350 | 0.5 mol L‒1 H2SO4 | 1.45@10 | 1000 | [ |
Ru0.85Zn0.15O2-δ | 1.0 mol L‒1 KOH/0.5 mol L‒1 H2SO4 | 1.47@10/1.50@10 | 50 | [ |
Y2MnRuO7 | 0.1 mol L‒1 HClO4 | 1.75@1000 | 24 | [ |
Fig. 28. (a) Polarization curves of a/c-RuO2||c-RuO2 and commercial Pt/C||RuO2 for water splitting in 0.5 mol L?1 H2SO4. (b) Photo image of a/c-RuO2-based two-electrode electrolyzer driven by a battery with 1.5 V. (c) Time-dependent current density curves of a/c-RuO2||a/c-RuO2 and commercial Pt/C||RuO2 for water splitting in 0.5 mol L?1 H2SO4 at 50 mA cm-2. Reprinted with permission from Ref. [191]. Copyright 2021, John Wiley and Sons. (d) Polarization curves of the catalysts in the two-electrode configuration for water splitting. (e) Photo of the RuO2-NiO/NF||RuO2-NiO/NF couple powered by a single AA battery. (f) Chronoamperometric curves of RuO2-NiO/NF||RuO2-NiO/NF. Reprinted with permission from Ref. [97]. Copyright 2020, Royal Society of Chemistry. (g) Schematic diagram of the PEM electrolyzer. Reprinted with permission from Ref. [170]. Copyright 2023, John Wiley and Sons. (h) Steady-state polarization curve of a PEM electrolyzer measured at 80 °C using SrRuIr as anodic catalysts. (i) Chronopotentiometry tests of the SrRuIr oxide catalyst at 1 A cm?2 in the PEM electrolyzer measured at 80 °C. Reprinted with permission from Ref. [184]. Copyright 2021, American Chemical Society.
|
[1] | Guangtong Hai, Zhongheng Fu, Xin Liu, Xiubing Huang. Recent progress in electrocatalytic reduction of nitrogen to ammonia [J]. Chinese Journal of Catalysis, 2024, 60(5): 107-127. |
[2] | Wenjian Fang, Jiawei Yan, Zhidong Wei, Junying Liu, Weiqi Guo, Zhi Jiang, Wenfeng Shangguan. Account of doping photocatalyst for water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 1-24. |
[3] | Wei-Fan Wu, Jin-Ge Fan, Zhen-Hong Zhao, Jian-Min Pan, Jing Yang, Xingbin Yan, Yi Zhan. Wonton-structured KB@Co-C3N4 as a highly active and stable oxygen catalyst in neutral electrolyte for Zinc-air battery [J]. Chinese Journal of Catalysis, 2024, 60(5): 178-189. |
[4] | Chao Feng, Yanbo Li. Self-healing mechanisms toward stable photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 158-170. |
[5] | Zhibing Chen, Xintai Chen, Yali Lv, Xiaoling Mou, Jiahui Fan, Jingwei Li, Li Yan, Ronghe Lin, Yunjie Ding. Design of earth-abundant Ni3ZnC0.7@Ni@C catalyst for selective butadiene hydrogenation [J]. Chinese Journal of Catalysis, 2024, 60(5): 304-315. |
[6] | Jieting Ding, Hao-Fan Wang, Kui Shen, Xiaoming Wei, Liyu Chen, Yingwei Li. Amorphization of MOFs with rich active sites and high electronic conductivity for hydrazine oxidation [J]. Chinese Journal of Catalysis, 2024, 60(5): 351-359. |
[7] | Adel Al-Salihy, Ce Liang, Abdulwahab Salah, Abdel-Basit Al-Odayni, Ziang Lu, Mengxin Chen, Qianqian Liu, Ping Xu. Ultralow Ru-doped NiMoO4@Ni3(PO4)2 core-shell nanostructures for improved overall water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 360-375. |
[8] | Chengyi Zhang, Xingyu Wang, Ziyun Wang. Large language model in electrocatalysis [J]. Chinese Journal of Catalysis, 2024, 59(4): 7-14. |
[9] | Chaochen Wang, Wangxin Ge, Lei Tang, Yanbin Qi, Lei Dong, Hongliang Jiang, Jianhua Shen, Yihua Zhu, Chunzhong Li. Highly selective CO2-to-CO electroreduction on multisite coordinated single-atom-modified atomic cluster Cu-based catalyst [J]. Chinese Journal of Catalysis, 2024, 59(4): 324-333. |
[10] | Ning Song, Jizhou Jiang, Shihuan Hong, Yun Wang, Chunmei Li, Hongjun Dong. State-of-the-art advancements in single atom electrocatalysts originating from MOFs for electrochemical energy conversion [J]. Chinese Journal of Catalysis, 2024, 59(4): 38-81. |
[11] | Yi Xie, Zhanyou Xu, Qian Lu, Ying Wang. Construction of efficient and stable low-temperature reverse-bias bipolar membrane electrolyser for CO2 reduction [J]. Chinese Journal of Catalysis, 2024, 59(4): 82-96. |
[12] | Yuan Jiang, Ji Yang, Mu-Lin Li, Xue-Jia Wang, Na Yang, Wei-Ping Chen, Jin-Chao Dong, Jian-Feng Li. Unveiling the activity tendency of well-defined metal-N4 sites for electrocatalytic nitrate reduction [J]. Chinese Journal of Catalysis, 2024, 59(4): 195-203. |
[13] | Yuanyong Huang, Hong Yang, Xinyu Lu, Min Chen, Weidong Shi. Near infrared-driven photocatalytic overall water splitting: Progress and perspective [J]. Chinese Journal of Catalysis, 2024, 58(3): 105-122. |
[14] | Lili Chen, Yanheng Hao, Jianyi Chu, Song Liu, Fenghua Bai, Wenhao Luo. Electrocatalytic nitrate reduction to ammonia: A perspective on Fe/Cu-containing catalysts [J]. Chinese Journal of Catalysis, 2024, 58(3): 25-36. |
[15] | Zidong Wei, Xun Huang, Haohong Duan, Mingfei Shao, Rengui Li, Jinli Zhang, Can Li, Xue Duan. Electrochemical synthesis in company with hydrogen production via renewable energy: Opportunities and challenges [J]. Chinese Journal of Catalysis, 2024, 58(3): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||