Chinese Journal of Catalysis ›› 2024, Vol. 64: 152-165.DOI: 10.1016/S1872-2067(24)60099-9
• Articles • Previous Articles Next Articles
Fangxuan Liua, Bin Suna,b,*(), Ziyan Liua, Yingqin Weia, Tingting Gaoa,b, Guowei Zhoua,*(
)
Received:
2024-06-09
Accepted:
2024-07-03
Online:
2024-09-18
Published:
2024-09-19
Contact:
* E-mail: Supported by:
Fangxuan Liu, Bin Sun, Ziyan Liu, Yingqin Wei, Tingting Gao, Guowei Zhou. Vacancy engineering mediated hollow structured ZnO/ZnS S-scheme heterojunction for highly efficient photocatalytic H2 production[J]. Chinese Journal of Catalysis, 2024, 64: 152-165.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60099-9
Fig. 2. FSEM image (a), TEM image (b), HRTEM image (c), fast Fourier transform patterns (d), and elemental mappings (e?h) of O, S, Zn of VO, Zn-ZOS-2.
Fig. 3. XRD patterns of ZnO, ZnS, and VO, Zn-ZnO/ZnS (a), enlarged XRD patterns in 25°?31° (b), enlarged XRD patterns in 30°?38° (c). Raman spectra (d) of ZnO, ZnS and VO, Zn-ZOS-2. EPR spectra (e) of ZnO and VO, Zn-ZnO/ZnS. N2 adsorption-desorption isotherms (f) and pore size distribution curves (g) of ZnO and VO, Zn-ZnO/ZnS.
Fig. 4. XPS survey spectra of ZnO, ZnS, and VO, Zn-ZOS-2 (a). High-resolution XPS spectra of Zn 2p (b), O 1s (c), and S 2p (d) of ZnO, ZnS, and VO, Zn-ZOS-2 with and without light irradiation.
Fig. 5. UV‐vis diffuse reflectance spectra (a), Tauc plots (b), Mott-Schottky plots (c,d), VB-XPS spectra (e), and UPS (f) of as-prepared samples. The inset shows the optical images of as-prepared samples in (a).
Fig. 6. Transient photocurrent spectra (a), EIS Nyquist plots (b), SPV spectra (c), PL spectra (d), TRPL spectra (e), and LSV curves (f) of as-prepared samples.
Fig. 7. Photocatalytic H2 production (a) and photocatalytic H2 production rate (b) of as-prepared samples. (c) Comparison of the photocatalytic H2 production rate of VO, Zn-ZnO/ZnS heterojunction with other reported representative photocatalysts. AQY and UV‐vis absorption spectra (d), recycling H2 evolution tests (e), and XRD patterns (f) of VO, Zn-ZOS-2 before and after photocatalytic reaction.
Fig. 8. Schematic illustration (a) of preparation process of VO, Zn-ZOS-2 hydrogel. Photocatalytic H2 production (b) of pure hydrogel and VO, Zn-ZOS-2 hydrogel. Recycling H2 production tests (c) of VO, Zn-ZOS-2 hydrogel.
Fig. 9. The relation between photocatalytic H2 production rate and temperature of ZnO, ZnS, and VO, Zn-ZOS-2 (a) and comparison of the apparent activation energy (b).
Fig. 11. DFT calculated electrostatic potentials of ZnO (a) and ZnS (b). Side view and top view of the charge density difference (c-e) and planar-averaged charge density difference (f) of VO, Zn-ZnO/ZnS. The yellow area and blue area represent the electrons accumulation and depletion, respectively.
Fig. 12. ESR spectra of DMPO-?OH (a) and DMPO-?O2- (b) of ZnO, ZnS, and VO, Zn-ZOS-2 under light illumination. Schematic illustration of S-scheme charge transfer mechanism of VO, Zn-ZnO/ZnS heterojunction: before contact (c), after contact (d), and light irradiation (e).
|
[1] | Yanyan Zhao, Chunyan Yang, Shumin Zhang, Guotai Sun, Bicheng Zhu, Linxi Wang, Jianjun Zhang. Investigating the charge transfer mechanism of ZnSe QD/COF S-scheme photocatalyst for H2O2 production by using femtosecond transient absorption spectroscopy [J]. Chinese Journal of Catalysis, 2024, 63(8): 258-269. |
[2] | Fulin Wang, Xiangwei Li, Kangqiang Lu, Man Zhou, Changlin Yu, Kai Yang. Molten salt construction of core-shell structured S-scheme CuInS2@CoS2 heterojunction to boost charge transfer for efficient photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2024, 63(8): 190-201. |
[3] | Qiqi Zhang, Hui Miao, Jun Wang, Tao Sun, Enzhou Liu. Self-assembled S-scheme In2.77S4/K+-doped g-C3N4 photocatalyst with selective O2 reduction pathway for efficient H2O2 production using water and air [J]. Chinese Journal of Catalysis, 2024, 63(8): 176-189. |
[4] | Chunguang Chen, Jinfeng Zhang, Hailiang Chu, Lixian Sun, Graham Dawson, Kai Dai. Chalcogenide-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2024, 63(8): 81-108. |
[5] | Miaoli Gu, Yi Yang, Bei Cheng, Liuyang Zhang, Peng Xiao, Tao Chen. Unveiling product selectivity in S-scheme heterojunctions: Harnessing charge separation for tailored photocatalytic oxidation [J]. Chinese Journal of Catalysis, 2024, 59(4): 185-194. |
[6] | Baolong Zhang, Fangxuan Liu, Bin Sun, Tingting Gao, Guowei Zhou. Hierarchical S-scheme heterojunctions of ZnIn2S4-decorated TiO2 for enhancing photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2024, 59(4): 334-345. |
[7] | Jinkang Pan, Aicaijun Zhang, Lihua Zhang, Pengyu Dong. Construction of S-scheme heterojunction from protonated D-A typed polymer and MoS2 for efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 180-193. |
[8] | Cheng Yang, Xin Li, Mei Li, Guijie Liang, Zhiliang Jin. Anchoring oxidation co-catalyst over CuMn2O4/graphdiyne S-scheme heterojunction to promote eosin-sensitized photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 56(1): 88-103. |
[9] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[10] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[11] | Houwei He, Zhongliao Wang, Kai Dai, Suwen Li, Jinfeng Zhang. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 267-278. |
[12] | Han Li, Shanren Tao, Sijie Wan, Guogen Qiu, Qing Long, Jiaguo Yu, Shaowen Cao. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 167-176. |
[13] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
[14] | You Wu, Yi Yang, Miaoli Gu, Chuanbiao Bie, Haiyan Tan, Bei Cheng, Jingsan Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation [J]. Chinese Journal of Catalysis, 2023, 53(10): 123-133. |
[15] | Haijun Hu, Kailai Zhang, Ge Yan, Litong Shi, Baohua Jia, Hongwei Huang, Yu Zhang, Xiaodong Sun, Tianyi Ma. Precisely decorating CdS on Zr-MOFs through pore functionalization strategy: A highly efficient photocatalyst for H2 production [J]. Chinese Journal of Catalysis, 2022, 43(9): 2332-2341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||