Chinese Journal of Catalysis ›› 2025, Vol. 73: 242-251.DOI: 10.1016/S1872-2067(25)64687-0
• Article • Previous Articles Next Articles
Rui Lia, Pengfei Fenga, Bonan Lia, Jiayu Zhua, Yali Zhangb, Ze Zhanga, Jiangwei Zhangb(), Yong Dinga,c(
)
Received:
2025-03-03
Accepted:
2025-04-15
Online:
2025-06-18
Published:
2025-06-12
Contact:
*E-mail: zjw11@tsinghua.org.cn/jwz@imu.edu.cn (J. Zhang),
dingyong1@lzu.edu.cn (Y. Ding).
Supported by:
Rui Li, Pengfei Feng, Bonan Li, Jiayu Zhu, Yali Zhang, Ze Zhang, Jiangwei Zhang, Yong Ding. Photocatalytic reduction of CO2 over porous ultrathin NiO nanosheets with oxygen vacancies[J]. Chinese Journal of Catalysis, 2025, 73: 242-251.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64687-0
Fig. 4. (a) XRD patterns of as-prepared samples. Ni 2p (b) and O 1s (c) XPS spectra of NiO-1 and NiO-9. Ni K-edge XANES spectra (d), FT k3-weighted EXAFS curves (e) and structural representations (f) of NiO-1 and NiO-9.
Fig. 5. (a) Photocatalytic CO2 reduction activities of NiO-1 to NiO-9. (b) Photocatalytic CO2 reduction activities of different masses NiO-1. (c)Kinetic curves for gas evolution amount of NiO-1. (d) Single variable control experiments for photocatalytic CO2 reduction over NiO-1. (e) Isotopic 13CO2 experiment of NiO-1. (f) Recycling experiments for photocatalytic CO2 reduction over NiO-1.
Fig. 6. (a) Photocatalytic CO2 reduction activities of NiO-1 in atmosphere. (b,c) Kinetic curves for gas evolution amount of NiO-1 with Ar and O2. (d) Controlled experiment with or without catalyst under atmospheric condition. (e) In situ FT-IR spectra for the photocatalytic CO2 reduction in atmosphere.
Fig. 7. Steady state PL spectra (a) and time-resolved PL spectra (b) of NiO-1, NiO-9 and [Ru(bpy)3]Cl2. Transient photocurrent curves (c) and EIS (d) for NiO-1 and NiO-9. (e) BET curves of NiO-1 and NiO-9. (f) CO2 adsorption curves of NiO-1 and NiO-9.
Fig. 8. (a) Theoretical dipole moments for NiO-1 and NiO-9. (b) The surface electrostatic potential distribution of NiO-1. (c-f) Side view the charge density difference of NiO-1 and NiO-9 adsorbed with CO2 with an isosurface of 1.5 × 10-3 e/?3.
Fig. 9. (a) In situ FTIR spectra for the photocatalytic CO2 reduction on NiO-1. (b) Transformation diagram for CO2 photoreduction over NiO-1. (c) Free energy diagrams for the adsorption and activation on NiO-1 and NiO-9.
|
[1] | Jangeon Roh, Kihun Nam, Yong Hyun Lim, Yeseul Hwang, Hae Won Ryu, Kyoungmin Kim, Gyeongmin Seok, Yangho Jeong, Jong Hun Kang, Jungyeop Lee, Jong-Ki Jeon, Do Heui Kim. Promotional effect of silica shell coated NiO physically mixed with Mo/HZSM-5 catalyst on methane dehydroaromatization [J]. Chinese Journal of Catalysis, 2025, 71(4): 220-233. |
[2] | Mingxing Chen, Zihe Du, Nian Liu, Huijie Li, Jing Qi, Enbo Shangguan, Jing Li, Jiahao Cao, Shujiao Yang, Wei Zhang, Rui Cao. Cation and anion modulation activates lattice oxygen for enhanced oxygen evolution [J]. Chinese Journal of Catalysis, 2025, 69(2): 282-291. |
[3] | Dongxiao Wen, Nan Wang, Jiahe Peng, Tetsuro Majima, Jizhou Jiang. Collaborative photocatalytic C-C coupling with Cu and P dual sites to produce C2H4 over CuxP/g-C3N4 heterojunction [J]. Chinese Journal of Catalysis, 2025, 69(2): 58-74. |
[4] | Yuqing Tang, Yanjun Chen, Aqsa Abid, Zichun Meng, Xiaoying Sun, Bo Li, Zhen Zhao. Revisiting the origin of the superior performance of defective zirconium oxide catalysts in propane dehydrogenation: Double-edged oxygen vacancy [J]. Chinese Journal of Catalysis, 2025, 68(1): 272-281. |
[5] | Xinyu Chen, Cong-Cong Zhao, Jing Ren, Bo Li, Qianqian Liu, Wei Li, Fan Yang, Siqi Lu, YuFei Zhao, Li-Kai Yan, Hong-Ying Zang. An oxygen-vacancy-rich polyoxometalate-aided Ag-based heterojunction electrocatalyst for nitrogen fixation [J]. Chinese Journal of Catalysis, 2024, 62(7): 209-218. |
[6] | Zheng Wei, Guoxia Jiang, Yiwen Wang, Ganggang Li, Zhongshen Zhang, Jie Cheng, Fenglian Zhang, Zhengping Hao. Asymmetric oxygen vacancies in La2FeMO6 double perovskite for boosting oxygen activation and H2S selective oxidation [J]. Chinese Journal of Catalysis, 2024, 62(7): 198-208. |
[7] | Qingyun Lv, Weiwei Zhang, Zhipeng Long, Jiantao Wang, Xingli Zou, Wei Ren, Long Hou, Xionggang Lu, Yufeng Zhao, Xing Yu, Xi Li. Large-current polarization-engineered FeOOH@NiOOH electrocatalyst with stable Fe sites for large-current oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2024, 62(7): 254-264. |
[8] | Lingkun Yang, Zongjun Li, Xin Wang, Lingling Li, Zhe Chen. Facile electrospinning synthesis of S-scheme heterojunction CoTiO3/g-C3N4 nanofiber with enhanced visible light photocatalytic activity [J]. Chinese Journal of Catalysis, 2024, 59(4): 237-249. |
[9] | Jielin Huang, Jie Wang, Haonan Duan, Songsong Chen, Junping Zhang, Li Dong, Xiangping Zhang. Constructing mesoporous CeO2 single-crystal particles in ionic liquids for enhancing the conversion of CO2 and alcohols to carbonates [J]. Chinese Journal of Catalysis, 2024, 66(11): 152-167. |
[10] | Ya’nan Xia, Jingqi Chi, Junheng Tang, Xiaobin Liu, Zhenyu Xiao, Jianping Lai, Lei Wang. Research progress of anionic vacancies in electrocatalysts for oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2024, 66(11): 110-138. |
[11] | Xiaotian Wang, Bo Hu, Yuan Li, Zhixiong Yang, Gaoke Zhang. Dipole moment regulation by Ni doping ultrathin Bi4O5Br2 for enhancing internal electric field toward efficient photocatalytic conversion of CO2 to CO [J]. Chinese Journal of Catalysis, 2024, 66(11): 257-267. |
[12] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[13] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[14] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[15] | Zizi Li, Jia-Wei Wang, Yanjun Huang, Gangfeng Ouyang. Enhancing CO2 photoreduction via the perfluorination of Co(II) phthalocyanine catalysts in a noble-metal-free system [J]. Chinese Journal of Catalysis, 2023, 49(6): 160-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||