Chinese Journal of Catalysis ›› 2024, Vol. 66: 152-167.DOI: 10.1016/S1872-2067(24)60117-8
• Articles • Previous Articles Next Articles
Jielin Huanga,b, Jie Wanga,b, Haonan Duanb, Songsong Chena,b, Junping Zhangb,c, Li Dongb,c,*(), Xiangping Zhangb,*(
)
Received:
2024-05-10
Accepted:
2024-08-12
Online:
2024-11-18
Published:
2024-11-10
Contact:
*E-mail: Supported by:
Jielin Huang, Jie Wang, Haonan Duan, Songsong Chen, Junping Zhang, Li Dong, Xiangping Zhang. Constructing mesoporous CeO2 single-crystal particles in ionic liquids for enhancing the conversion of CO2 and alcohols to carbonates[J]. Chinese Journal of Catalysis, 2024, 66: 152-167.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60117-8
Fig. 1. XRD patterns of CeO2-M, CeO2-IL-M, CeO2-IL-W, and CeO2-IL-M-All samples (a), CeO2 catalysts constructed in different ILs and Comm-CeO2 catalyst (b). (c) FT-IR spectra of all the catalysts. (d) TG curve of CeO2-IL-M sample.
Fig. 3. TEM images of CeO2-IL-M (a-c), CeO2-IL-W (d-f), and CeO2-IL-M-All (g-i) mesoporous single-crystal. HAADF-STEM image (j) and corresponding elemental mappings images (k,l) of Ce (k) and O (l) of mesoporous CeO2-IL-M single-crystal.
Scheme 1. The brief preparation process of catalysts, wherein the catalyst obtained from Ce(NO3)3·6H2O in TEAOH/methanol/H2O system was recorded as CeO2-IL-M. Besides, CeO2-M (methanol/H2O system), CeO2-IL-W (TEAOH/H2O/H2O system), and CeO2-IL-M-All (TEAOH/methanol/methanol system) was prepared for comparison in this work.
Fig. 5. TEM images of CeO2-IL-M-Ace catalyst prepared with (CH3CO2)3Ce·xH2O (a-c), CeO2-IL-M-Chl catalyst prepared with CeCl3·6H2O (d-f), and CeO2-IL-M-Amm catalyst prepared with H8CeN8O18 (g-i).
Sample | Surface area a (m2 g-1) | Pore diameter b (nm) | Pore volume c (cm3 g-1) |
---|---|---|---|
CeO2-M | 29.343 | 3.394 | 0.019 |
CeO2-IL-M | 57.000 | 3.063 | 0.117 |
CeO2-IL-W | 57.340 | 3.073 | 0.081 |
CeO2-IL-M-All | 80.952 | 3.064 | 0.116 |
Table 1 Physical and chemical properties of the samples.
Sample | Surface area a (m2 g-1) | Pore diameter b (nm) | Pore volume c (cm3 g-1) |
---|---|---|---|
CeO2-M | 29.343 | 3.394 | 0.019 |
CeO2-IL-M | 57.000 | 3.063 | 0.117 |
CeO2-IL-W | 57.340 | 3.073 | 0.081 |
CeO2-IL-M-All | 80.952 | 3.064 | 0.116 |
Fig. 9. (a) CO2-TPD profiles of the CeO2-M, CeO2-IL-M, CeO2-IL-W, and CeO2-IL-M-All samples. (b) Partially enlarged profiles of 50-200 °C in (a). (c) CO2-TPD profiles of the CeO2-M, CeO2-IL-M, CeO2-IL-W, and CeO2-IL-M-All samples. (d) The integral area of the zone in the temperature range of 50-150 °C in (a) and 50-200 °C in (c).
Fig. 10. (a,b) The catalytic activities of commercial CeO2 and CeO2-M, CeO2-IL-M, CeO2-IL-W, and CeO2-IL-M-All samples for the reaction of CO2 and EG to produce EC. (c) The catalytic activities of CeO2-ILx-M samples prepared with different ILs. (d) The cycling performance of catalyst CeO2-IL-M.
Fig. 11. The different influences of experiment parameters the reaction temperature (a), the pressure of CO2 (b), reaction time (c), and catalyst usage (d) of CeO2-IL-M mesocrystalline nanoparticles.
Fig. 12. React-IR spectra during the catalytic production of EC from CO2 and EG by the CeO2-M (a), CeO2-IL-M (b), CeO2-IL-W (c), and CeO2-IL-M-All (d) catalysts.
Fig. 13. The rate of group change over time, k = ΔIntensity/Δt (a.u./min), monitored via React-IR spectra during the catalytic production of EC from CO2 and EG by the CeO2-M, CeO2-IL-M, CeO2-IL-W, and CeO2-IL-M-All catalysts. (a) Changes of groups over time in catalytic processes of CeO2-IL-M; (b) the k of O=C-NH2 group; (c) the k of O=C group; (d) the k of O=C-R group.
Fig. 14. Isotope labelling experiments and analysis of GC-MS test results (a and b), and formation pathways of EC and?2-picolinamide on the CeO2-IL-M catalysts (c).
|
[1] | Xu Zhang, Wen-Jing Zhang, Yan-Cheng Hu, Zhi-Guang Zhang, Jing-Pei Cao. Catalytic production of fused tetracyclic high-energy-density fuel with biomass-derived cyclopentanone and benzoquinone [J]. Chinese Journal of Catalysis, 2024, 67(12): 166-175. |
[2] | Ernest Pahuyo Delmo, Yian Wang, Jing Wang, Shangqian Zhu, Tiehuai Li, Xueping Qin, Yibo Tian, Qinglan Zhao, Juhee Jang, Yinuo Wang, Meng Gu, Lili Zhang, Minhua Shao. Metal organic framework-ionic liquid hybrid catalysts for the selective electrochemical reduction of CO2 to CH4 [J]. Chinese Journal of Catalysis, 2022, 43(7): 1687-1696. |
[3] | Zixun Yu, Chang Liu, Yeyu Deng, Mohan Li, Fangxin She, Leo Lai, Yuan Chen, Li Wei. Interfacial engineering of heterogeneous molecular electrocatalysts using ionic liquids towards efficient hydrogen peroxide production [J]. Chinese Journal of Catalysis, 2022, 43(5): 1238-1246. |
[4] | Yiqi Ren, Lin Tao, Chunzhi Li, Sanjeevi Jayakumar, He Li, Qihua Yang. Development of efficient solid chiral catalysts with designable linkage for asymmetric transfer hydrogenation of quinoline derivatives [J]. Chinese Journal of Catalysis, 2021, 42(9): 1576-1585. |
[5] | Bihua Chen, Tong Ding, Xi Deng, Xin Wang, Dawei Zhang, Sanguan Ma, Yongya Zhang, Bing Ni, Guohua Gao. Honeycomb-structured solid acid catalysts fabricated via the swelling-induced self-assembly of acidic poly(ionic liquid)s for highly efficient hydrolysis reactions [J]. Chinese Journal of Catalysis, 2021, 42(2): 297-309. |
[6] | Jia Zhao, Saisai Wang, Bolin Wang, Yuxue Yue, Chunxiao Jin, Jinyue Lu, Zheng Fang, Xiangxue Pang, Feng Feng, Lingling Guo, Zhiyan Pan, Xiaonian Li. Acetylene hydrochlorination over supported ionic liquid phase (SILP) gold-based catalyst: Stabilization of cationic Au species via chemical activation of hydrogen chloride and corresponding mechanisms [J]. Chinese Journal of Catalysis, 2021, 42(2): 334-346. |
[7] | Kai Li, Mengxia Ji, Rong Chen, Qi Jiang, Jiexiang Xia, Huaming Li. Construction of nitrogen and phosphorus co-doped graphene quantum dots/Bi5O7I composites for accelerated charge separation and enhanced photocatalytic degradation performance [J]. Chinese Journal of Catalysis, 2020, 41(8): 1230-1239. |
[8] | Qingqing Yu, Jiangyao Chen, Yanxu Li, Meicheng Wen, Hongli Liu, Guiying Li, Taicheng An. In-situ decoration of metallic Bi on BiOBr with exposed (110) facets and surface oxygen vacancy for enhanced solar light photocatalytic degradation of gaseous n-hexane [J]. Chinese Journal of Catalysis, 2020, 41(10): 1603-1612. |
[9] | Minghao Li, Fengtian Wu, Yanlong Gu. Brönsted acidic ionic liquid catalyzed synthesis of benzo[a]carbazole from renewable acetol and 2-phenylindoles in a biphasic system [J]. Chinese Journal of Catalysis, 2019, 40(8): 1135-1140. |
[10] | Hanxiang Chen, Jie Zeng, Mindong Chen, Zhigang Chen, Mengxia Ji, Junze Zhao, Jiexiang Xia, Huaming Li. Improved visible light photocatalytic activity of mesoporous FeVO4 nanorods synthesized using a reactable ionic liquid [J]. Chinese Journal of Catalysis, 2019, 40(5): 744-754. |
[11] | Guoqin Wang, Heyuan Song, Ruiyun Li, Zhen Li, Jing Chen. Olefin oligomerization via new and efficient Brönsted acidic ionic liquid catalyst systems [J]. Chinese Journal of Catalysis, 2018, 39(6): 1110-1120. |
[12] | SuHong Zhong, Guanzhong Lu, XueQing Gong. A DFT+U study of the structures and reactivities of polar CeO2(100) surfaces [J]. Chinese Journal of Catalysis, 2017, 38(7): 1138-1147. |
[13] | Henan Li, Yanan Xu, Hansinee Sitinamaluwa, Kimal Wasalathilake, Dilini Galpaya, Cheng Yan. Cu nanoparticles supported on graphitic carbon nitride as an efficient electrocatalyst for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2017, 38(6): 1006-1010. |
[14] | Wei Zhang, Feng Han, Jin Tong, Chungu Xia, Jianhua Liu. Cobalt carbonyl ionic liquids based on the 1,1,3,3-tetra-alkylguanidine cation: Novel, highly efficient, and reusable catalysts for the carbonylation of epoxides [J]. Chinese Journal of Catalysis, 2017, 38(5): 805-812. |
[15] | Heyuan Song, Meirong Kang, Fuxiang Jin, Guoqin Wang, Zhen Li, Jing Chen. Brønsted-acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dialkyl ethers [J]. Chinese Journal of Catalysis, 2017, 38(5): 853-861. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||