Chinese Journal of Catalysis ›› 2024, Vol. 66: 146-151.DOI: 10.1016/S1872-2067(24)60125-7
• Communications • Previous Articles Next Articles
Junbao Penga, Jin Xiea, Zelong Lia,*(), Can Lia,b,*(
)
Received:
2024-07-18
Accepted:
2024-08-26
Online:
2024-11-18
Published:
2024-11-10
Contact:
*E-mail: Supported by:
Junbao Peng, Jin Xie, Zelong Li, Can Li. Photon-induced regeneration of Pd catalyst for carbonylation of amines to ureas[J]. Chinese Journal of Catalysis, 2024, 66: 146-151.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60125-7
Entry | [Pd] source | [I] source | Solvent | Conversion/ % | Selectivity/ % | Yielda/ % |
---|---|---|---|---|---|---|
1 | Pd(OAc)2 | KI | CH3CN | 87 | 99 | 86 |
2 | PdCl2 | KI | CH3CN | 88 | 99 | 87 |
3 | Pd(acac)2 | KI | CH3CN | 70 | 96 | 67 |
4 | Pd(dba)2 | KI | CH3CN | 81 | 98 | 79 |
5b | Pd(OAc)2 | KI | CH3CN | 58 | 99 | 57 |
6c | Pd(OAc)2 | KI | CH3CN | 92 | 99 | 91 |
7 | — | KI | CH3CN | Trace | 0 | 0 |
8 | Pd(OAc)2 | — | CH3CN | Trace | 0 | 0 |
9d | Pd(OAc)2 | KI | CH3CN | Trace | 0 | 0 |
10e | Pd(OAc)2 | KI | CH3CN | Trace | 0 | 0 |
11f | Pd(OAc)2 | — | CH3CN | Trace | 0 | 0 |
12 | Pd(OAc)2 | KI | EtOH | 47 | 94 | 44 |
13 | Pd(OAc)2 | KI | THF | 29 | 99 | 29 |
14 | Pd(OAc)2 | KI | Toluene | 25 | 95 | 24 |
15 | Pd(OAc)2 | TEAI | CH3CN | 39 | 87 | 34 |
16 | Pd(OAc)2 | TBAI | CH3CN | 55 | 99 | 54 |
17 | Pd(OAc)2 | I2 | CH3CN | 62 | 98 | 61 |
18 | Pd(OAc)2 | KBr | CH3CN | Trace | 0 | 0 |
Table 1 Optimization of reaction condition.
Entry | [Pd] source | [I] source | Solvent | Conversion/ % | Selectivity/ % | Yielda/ % |
---|---|---|---|---|---|---|
1 | Pd(OAc)2 | KI | CH3CN | 87 | 99 | 86 |
2 | PdCl2 | KI | CH3CN | 88 | 99 | 87 |
3 | Pd(acac)2 | KI | CH3CN | 70 | 96 | 67 |
4 | Pd(dba)2 | KI | CH3CN | 81 | 98 | 79 |
5b | Pd(OAc)2 | KI | CH3CN | 58 | 99 | 57 |
6c | Pd(OAc)2 | KI | CH3CN | 92 | 99 | 91 |
7 | — | KI | CH3CN | Trace | 0 | 0 |
8 | Pd(OAc)2 | — | CH3CN | Trace | 0 | 0 |
9d | Pd(OAc)2 | KI | CH3CN | Trace | 0 | 0 |
10e | Pd(OAc)2 | KI | CH3CN | Trace | 0 | 0 |
11f | Pd(OAc)2 | — | CH3CN | Trace | 0 | 0 |
12 | Pd(OAc)2 | KI | EtOH | 47 | 94 | 44 |
13 | Pd(OAc)2 | KI | THF | 29 | 99 | 29 |
14 | Pd(OAc)2 | KI | Toluene | 25 | 95 | 24 |
15 | Pd(OAc)2 | TEAI | CH3CN | 39 | 87 | 34 |
16 | Pd(OAc)2 | TBAI | CH3CN | 55 | 99 | 54 |
17 | Pd(OAc)2 | I2 | CH3CN | 62 | 98 | 61 |
18 | Pd(OAc)2 | KBr | CH3CN | Trace | 0 | 0 |
Scheme 2. The substrate scope for the synthesis of ureas. Reaction conditions: (A) Symmetrical ureas. 1 (1.0 mmol), CO/O2 (balloon), CH3CN (8 mL), 20W blue LED, isolated yields. a 48 h. b Ethylene glycol dimethyl ether (DME) as solvent. (B) Unsymmetrical ureas. 1 (0.5 mmol), 1’ (1.0 mmol), CO/O2 (balloon), CH3CN (8 mL), 20 W blue LED, isolated yields. a 72 h.
Fig. 1. Investigation of the reaction mechanism. (A) Using I2 to replace KI and under dark. 1a (1.0 mmol), CO (balloon), CH3CN (8 mL), GC yield based on I2, n-hexadecane as internal standard. (B) Add 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO). 1a (1.0 mmol), CO/O2 (balloon), CH3CN (8 mL), 20 W blue LED, GC yield, n-hexadecane as internal standard. (C,D) UV-visible absorption spectrum. (E) Effect of different wavelengths on activity. 1a (1.0 mmol), CO/O2 (balloon), CH3CN (8 mL), Xe lamp with or without filter, GC yield, n-hexadecane as internal standard.
Scheme 4. Gram-scale reaction and synthesis of antifilarial drug. Reaction conditions: (A) Gram-scale reaction of morpholine. 1a (5.0 mmol), CO/O2 (balloon), CH3CN (20 mL), 20 W blue LED, isolated yields, (B) Synthesis of antifilarial drug. 1l (0.5 mmol), 1m (1mmol), CO/O2 (balloon), DME (8 mL), 20 W blue LED, isolated yields, a 1l (5 mmol), 1m (10 mmol), DME (20 mL), 72 h, GC yield.
|
[1] | Shuanglong Zhou, Yue Shi, Yu Dai, Tianrong Zhan, Jianping Lai, Lei Wang. Continuous-flow electrosynthesis of urea and oxalic acid by CO2-nitrate reduction and glycerol oxidation [J]. Chinese Journal of Catalysis, 2024, 63(8): 270-281. |
[2] | Xiaomin Zhang, Kai Cai, Ying Li, Ji Qi, Yue Wang, Yunduo Liu, Mei-Yan Wang, Shouying Huang, Xinbin Ma. Mechanistic insights and the role of spatial confinement in catalytic dimethyl ether carbonylation over SSZ-13 zeolite [J]. Chinese Journal of Catalysis, 2024, 61(6): 301-311. |
[3] | Ke Huang, Shicheng Yuan, Rongyan Mei, Ge Yang, Peng Bai, Hailing Guo, Chunzheng Wang, Svetlana Mintova. Mo-promoted Pd/NaY catalyst for indirect oxidative carbonylation of methanol to dimethyl carbonate [J]. Chinese Journal of Catalysis, 2024, 60(5): 327-336. |
[4] | Zhi-Peng Bao, Nai-Xian Sun, Xiao-Feng Wu. A general palladium-catalyzed carbonylative synthesis of α-CF3-substituted ketones and carboxylic acid derivatives [J]. Chinese Journal of Catalysis, 2024, 60(5): 171-177. |
[5] | Xingju Li, Zheng Li, Siquan Feng, Xiangen Song, Li Yan, Jiali Mu, Qiao Yuan, Lili Ning, Weimiao Chen, Zhongkang Han, Yunjie Ding. Promotional role of Ag1 on Pd1 in dual-site configurations from atomic dispersion of alloy nanoparticles for alkyne dialkoxycarbonylation [J]. Chinese Journal of Catalysis, 2024, 59(4): 282-292. |
[6] | Yu-Shuai Xu, Hong-Hui Wang, Qi-Yuan Li, Shi-Nan Zhang, Si-Yuan Xia, Dong Xu, Wei-Wei Lei, Jie-Sheng Chen, Xin-Hao Li. Functional ladder-like heterojunctions of Mo2C layers inside carbon sheaths for efficient CO2 fixation [J]. Chinese Journal of Catalysis, 2024, 58(3): 138-145. |
[7] | Zhichao Wang, Mengfan Wang, Yunfei Huan, Tao Qian, Jie Xiong, Chengtao Yang, Chenglin Yan. Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction [J]. Chinese Journal of Catalysis, 2024, 57(2): 1-17. |
[8] | Jielin Huang, Jie Wang, Haonan Duan, Songsong Chen, Junping Zhang, Li Dong, Xiangping Zhang. Constructing mesoporous CeO2 single-crystal particles in ionic liquids for enhancing the conversion of CO2 and alcohols to carbonates [J]. Chinese Journal of Catalysis, 2024, 66(11): 152-167. |
[9] | Zuo-Shu Sun, Xue-Yan Xiang, Qiu-Ping Zhao, Zhao Tang, Shi-Yi Jiang, Tong-Bu Lu, Zhi-Ming Zhang, Baifan Wang, Hua-Qing Yin. Efficient electrocatalytic urea synthesis from CO2 and nitrate over the scale-up produced FeNi alloy-decorated nanoporous carbon [J]. Chinese Journal of Catalysis, 2024, 65(10): 153-162. |
[10] | Changpo Ma, Ying Lai, Tiange Zhao, Xiaoxuan Zhang, Haichao Liu, Weiran Yang. Direct synthesis of α,ω-dicarboxylic acids via dicarbonylation of cyclic ethers [J]. Chinese Journal of Catalysis, 2024, 56(1): 122-129. |
[11] | Chun Yin, Fulin Yang, Shuli Wang, Ligang Feng. Heterostructured NiSe2/MoSe2 electronic modulation for efficient electrocatalysis in urea assisted water splitting reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 225-236. |
[12] | Xing-Wei Gu, Youcan Zhang, Fengqian Zhao, Han-Jun Ai, Xiao-Feng Wu. Phosphine-catalyzed photo-induced alkoxycarbonylation of alkyl iodides with phenols and 1,4-dioxane through charge-transfer complex [J]. Chinese Journal of Catalysis, 2023, 48(5): 214-223. |
[13] | Qian Li, Yan Liu, Can Li. Enantioselective synthesis of unprotected 2-quinolinone-based cyclic amino acids via sequential palladium-catalyzed asymmetric allylation/desymmetrization [J]. Chinese Journal of Catalysis, 2023, 47(4): 222-228. |
[14] | Chenxin Chen, Suqi He, Kamran Dastafkan, Zehua Zou, Qingxiang Wang, Chuan Zhao. Sea urchin-like NiMoO4 nanorod arrays as highly efficient bifunctional catalysts for electrocatalytic/photovoltage-driven urea electrolysis [J]. Chinese Journal of Catalysis, 2022, 43(5): 1267-1276. |
[15] | Zizhan Liang, Rongchen Shen, Peng Zhang, Youji Li, Neng Li, Xin Li. All-organic covalent organic frameworks/perylene diimide urea polymer S-scheme photocatalyst for boosted H2 generation [J]. Chinese Journal of Catalysis, 2022, 43(10): 2581-2591. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||