Chinese Journal of Catalysis ›› 2025, Vol. 74: 279-293.DOI: 10.1016/S1872-2067(25)64716-4
• Articles • Previous Articles Next Articles
Pengkun Zhanga, Qinhan Wua, Haoyu Wanga, Dong-Hau Kuob,*(), Yujie Laia, Dongfang Lua,*(
), Jiqing Lia,*(
), Jinguo Lina,*(
), Zhanhui Yuana, Xiaoyun Chena,*(
)
Received:
2024-11-28
Accepted:
2025-02-11
Online:
2025-07-18
Published:
2025-07-20
Contact:
*E-mail: Supported by:
Pengkun Zhang, Qinhan Wu, Haoyu Wang, Dong-Hau Kuo, Yujie Lai, Dongfang Lu, Jiqing Li, Jinguo Lin, Zhanhui Yuan, Xiaoyun Chen. Z-scheme heterojunction Zn3(OH)2(V2O7)(H2O)2/V-Zn(O,S) for enhanced visible-light photocatalytic N2 fixation via synergistic heterovalent vanadium states and oxygen vacancy defects[J]. Chinese Journal of Catalysis, 2025, 74: 279-293.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64716-4
Fig. 1. FE-SEM images of ZnVO (a), V-Zn(O,S) (b), and ZnVO/V-Zn(O,S)-1(c), 2(d), 3(e), and 4(f). TEM (g) and HR-TEM (h) images of ZnVO/V-Zn(O,S)-3. Selection region for elements mapping (i) and TEM-EDX element-mapping images of ZnVO/V-Zn(O,S)-3 (j-m). N2 adsorption-desorption isotherm (n) and the pore size distribution curves (o) of ZnVO, V-Zn(O,S), and ZnVO/V-Zn(O,S)-3 catalysts.
Fig. 2. XRD patterns of ZnVO and ZnVO/V-Zn(O,S) (a), and ZnVO, ZnVO/V-Zn(O,S)-3, Zn(O,S), and V-Zn(O,S) (b). (c) Survey spectra of ZnVO, ZnVO/V-Zn(O,S)-3, and V-Zn(O,S). High-resolution Zn 2p (d), V 2p (e), and O 1s (f) XPS, and EPR spectra (g) of ZnVO, ZnVO/V-Zn(O,S)-3, and V-Zn(O,S). (h) S 2p XPS spectra of ZnVO, ZnVO/V-Zn(O,S)-3, and V-Zn(O,S).
Fig. 3. (a) UV-vis spectra of ZnVO, Zn(O,S), V-Zn(O,S), and ZnVO/V-Zn(O,S). (b) Mott-Schottky curves of ZnVO, V-Zn(O,S), and ZnVO/V-Zn(O,S)-3 conducted at 500, 1000, and 2000 Hz. UPS (c) and VB-XPS (d) spectra of ZnVO, V-Zn(O,S), and ZnVO/V-Zn(O,S)-3.
Fig. 4. PL (a), TRPL (b), TPC (c), EIS (d), CV (e) spectra at a scan rate of 100 mV/s, CV spectra at a scan rate of 10 mV/s (f), CV spectra under slower scan rates (g), the J vs. scan rate plot for calculating ECSA (h), LSV (i), and the Tafel plots (j) of ZnVO, V-Zn(O,S), and ZnVO/V-Zn(O,S) catalysts.
Fig. 5. (a) Photocatalytic N2 fixation over ZnVO, V-Zn(O,S), and ZnVO/V-Zn(O,S) catalysts. (b) ZnVO/V-Zn(O,S)-3 catalyst photocatalytic reduction under N2 and Ar atmospheres in a water solution. (c) Photocatalytic reductions of the ZnVO/V-Zn(O,S)-3 catalyst in acetonitrile and silver nitrate aqueous solutions. (d) 1H-NMR (400 MHz) spectra for the solutions after photocatalytic N2 fixation under the 14N2 or 15N2 atmosphere with ZnVOS as a photocatalyst. (e) Photocatalytic N2 fixation cycling tests for ZnVO/V-Zn(O,S)-3 catalyst. Zn 2p (f), V 2p (g), O 1s (h), and S 2p (i) XPS spectra after the cycling reaction. (j) XRD spectra of ZnVO/V-Zn(O,S)-3 before and after reaction. (k) The CV curves of ZnVO/V-Zn(O,S)-3 before and after 100 cycling tests under 50 mV/s. (l) The long-term stability of the chronopotential test of the ZnVO/V-Zn(O,S)-3 catalyst electrode.
Fig. 6. DMPO-?OH (a) and DMPO-?O2- (b)generated by ZnVO, V-Zn(O,S), and ZnVO/V-Zn(O,S)-3 catalysts. Type-II (c) and Z-scheme (d) heterojunction band diagrams proposed for the ZnVO/V-Zn(O,S)-3 photocatalyst. (e) The band alignment and charge transfer pathway of ZnVO before and after contact with V-Zn(O,S) in darkness and under light exposure. (f) In suit XPS spectrum of S 2p under light irradiation. DMPO-?OH (g) and DMPO-?O2- (h) generated by ZnVO, V-Zn(O,S), and ZnVO/V-Zn(O,S)-3 catalysts under different durations.
|
[1] | Cunjun Li, Jie He, Tianle Cai, Xianlei Chen, Hengcong Tao, Yingtang Zhou, Mingshan Zhu. Surface oxygen vacancies of BiOBr regulating piezoelectricity for enhancing efficiency and selectivity of photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 74(7): 130-143. |
[2] | Rui Li, Pengfei Feng, Bonan Li, Jiayu Zhu, Yali Zhang, Ze Zhang, Jiangwei Zhang, Yong Ding. Photocatalytic reduction of CO2 over porous ultrathin NiO nanosheets with oxygen vacancies [J]. Chinese Journal of Catalysis, 2025, 73(6): 242-251. |
[3] | Yuqing Tang, Yanjun Chen, Aqsa Abid, Zichun Meng, Xiaoying Sun, Bo Li, Zhen Zhao. Revisiting the origin of the superior performance of defective zirconium oxide catalysts in propane dehydrogenation: Double-edged oxygen vacancy [J]. Chinese Journal of Catalysis, 2025, 68(1): 272-281. |
[4] | Xinyu Chen, Cong-Cong Zhao, Jing Ren, Bo Li, Qianqian Liu, Wei Li, Fan Yang, Siqi Lu, YuFei Zhao, Li-Kai Yan, Hong-Ying Zang. An oxygen-vacancy-rich polyoxometalate-aided Ag-based heterojunction electrocatalyst for nitrogen fixation [J]. Chinese Journal of Catalysis, 2024, 62(7): 209-218. |
[5] | Zheng Wei, Guoxia Jiang, Yiwen Wang, Ganggang Li, Zhongshen Zhang, Jie Cheng, Fenglian Zhang, Zhengping Hao. Asymmetric oxygen vacancies in La2FeMO6 double perovskite for boosting oxygen activation and H2S selective oxidation [J]. Chinese Journal of Catalysis, 2024, 62(7): 198-208. |
[6] | Teng Liang, Yutong Li, Shuai Xu, Yuxin Yao, Rongping Xu, Ji Bian, Ziqing Zhang, Liqiang Jing. Synergy of charge migration direction-manipulated Z-scheme heterojunction of BiVO4 quantum dots/perylenetetracarboxylic acid and nanosized Au modification for artificial H2O2 photosynthesis [J]. Chinese Journal of Catalysis, 2024, 62(7): 277-286. |
[7] | Jielin Huang, Jie Wang, Haonan Duan, Songsong Chen, Junping Zhang, Li Dong, Xiangping Zhang. Constructing mesoporous CeO2 single-crystal particles in ionic liquids for enhancing the conversion of CO2 and alcohols to carbonates [J]. Chinese Journal of Catalysis, 2024, 66(11): 152-167. |
[8] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[9] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[10] | Yan Zeng, Hui Wang, Huiru Yang, Chao Juan, Dan Li, Xiaodong Wen, Fan Zhang, Ji-Jun Zou, Chong Peng, Changwei Hu. Ni nanoparticle coupled surface oxygen vacancies for efficient synergistic conversion of palmitic acid into alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 229-242. |
[11] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
[12] | Tingting Jiang, Weiwei Xie, Shipeng Geng, Ruchun Li, Shuqin Song, Yi Wang. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis [J]. Chinese Journal of Catalysis, 2022, 43(9): 2434-2442. |
[13] | Xianwen Zhang, Zheng Li, Taifeng Liu, Mingrun Li, Chaobin Zeng, Hiroaki Matsumoto, Hongxian Han. Water oxidation sites located at the interface of Pt/SrTiO3 for photocatalytic overall water splitting [J]. Chinese Journal of Catalysis, 2022, 43(8): 2223-2230. |
[14] | Qing Yao, Jiabo Le, Shize Yang, Jun Cheng, Qi Shao, Xiaoqing Huang. A trace of Pt can significantly boost RuO2 for acidic water splitting [J]. Chinese Journal of Catalysis, 2022, 43(6): 1493-1501. |
[15] | Yu Deng, Jue Li, Rumeng Zhang, Chunqiu Han, Yi Chen, Ying Zhou, Wei Liu, Po Keung Wong, Liqun Ye. Solar-energy-driven photothermal catalytic C-C coupling from CO2 reduction over WO3-x [J]. Chinese Journal of Catalysis, 2022, 43(5): 1230-1237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||