Chinese Journal of Catalysis ›› 2025, Vol. 74: 319-328.DOI: 10.1016/S1872-2067(25)64729-2
• Articles • Previous Articles Next Articles
Wenjing Gao, Yuchan Liu, Chenyao Chen, Ziqi Lian, Rongkai Ye, Chaorong Qi*(), Jianqiang Hu*(
)
Received:
2025-01-17
Accepted:
2025-04-07
Online:
2025-07-18
Published:
2025-07-20
Contact:
*E-mail: Supported by:
Wenjing Gao, Yuchan Liu, Chenyao Chen, Ziqi Lian, Rongkai Ye, Chaorong Qi, Jianqiang Hu. Constructing dual-cocatalyst-directed quantifiable electron and hole transfer for enhanced photocatalytic performance[J]. Chinese Journal of Catalysis, 2025, 74: 319-328.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64729-2
Fig. 2. XRD patterns (A) and UV-vis absorption spectra (in water) (B) of CdS NPs and CdS/MBI, CdS/Ti3C2Tx and CdS/Ti3C2Tx-3/MBI-6 nanocomposites. (C) FT-IR spectra of MBI, CdS NPs and CdS/MBI, CdS/Ti3C2Tx and CdS/Ti3C2Tx-3/MBI-6 nanocomposites. SEM images of Ti3C2Tx (D), CdS/Ti3C2Tx (E) and CdS/Ti3C2Tx-3/MBI-6 (F) nanocomposites. TEM images of CdS/Ti3C2Tx-3/MBI-6 (G) and CdS/MBI (I) nanocomposites. (H) Element mapping images of CdS/Ti3C2Tx-3/MBI-6 nanocomposites.
Fig. 3. High-resolution XPS spectra of N 1s (A) and C 1s (B) of the CdS/Ti3C2Tx-3/MBI-6 nanocomposites and Cd 3d (C) and S 2p (D) of the CdS NPs and CdS/Ti3C2Tx and CdS/Ti3C2Tx-3/MBI-6 nanocomposites. (E) UV-vis diffuse reflectance spectra (solid) of the CdS NPs and CdS/MBI, CdS/Ti3C2Tx and CdS/Ti3C2Tx-3/MBI-6 nanocomposites. Tauc plots (F) and Mott-Schottky plots (G) of the CdS NPs. (H) Schematic plot of charge transfer of the CdS/Ti3C2Tx/MBI nanocomposites prepared by the present method.
Fig. 4. PL emission spectra (excitation wavelength: 370 nm) (A), electrochemical impedance spectroscopy Nyquist plots (B), TRPL spectra (λ = 375 nm) (C) and transient photocurrent response (D) of the CdS NPs and CdS/MBI, CdS/Ti3C2Tx and CdS/Ti3C2Tx-3/MBI-6 nanocomposites.
Fig. 5. (A) Yields and TOF of oxidative coupling of amines under different photocatalysts. (B) Reusability of the CdS/Ti3C2Tx-3/MBI-6 nanocomposites used for coupling of amines. (C) XRD patterns of the CdS/Ti3C2Tx-3/MBI-6 nanocomposites and corresponding photocatalysts after five cycles.
Entry | Photocatalyst | Yieldb (%) | TOFc (μmol·g-1·h-1) |
---|---|---|---|
1 | CdS | 30 | 2500 |
2 | CdS/MBI | 47 | 3917 |
3 | CdS/Ti3C2Tx | 48 | 4000 |
4 | CdS/Ti3C2Tx-1/MBI-4 | 55 | 4583 |
5 | CdS/Ti3C2Tx-2/MBI-4 | 64 | 5333 |
6 | CdS/Ti3C2Tx-3/MBI-4 | 80 | 6667 |
7 | CdS/Ti3C2Tx-4/MBI-4 | 69 | 5750 |
8 | CdS/Ti3C2Tx-3/MBI-2 | 56 | 4667 |
9 | CdS/Ti3C2Tx-3/MBI-6 | 96 | 8000 |
10 | CdS/Ti3C2Tx-3/MBI-8 | 76 | 6333 |
Table 1 Photocatalytic oxidative coupling of amines under different conditions.a
Entry | Photocatalyst | Yieldb (%) | TOFc (μmol·g-1·h-1) |
---|---|---|---|
1 | CdS | 30 | 2500 |
2 | CdS/MBI | 47 | 3917 |
3 | CdS/Ti3C2Tx | 48 | 4000 |
4 | CdS/Ti3C2Tx-1/MBI-4 | 55 | 4583 |
5 | CdS/Ti3C2Tx-2/MBI-4 | 64 | 5333 |
6 | CdS/Ti3C2Tx-3/MBI-4 | 80 | 6667 |
7 | CdS/Ti3C2Tx-4/MBI-4 | 69 | 5750 |
8 | CdS/Ti3C2Tx-3/MBI-2 | 56 | 4667 |
9 | CdS/Ti3C2Tx-3/MBI-6 | 96 | 8000 |
10 | CdS/Ti3C2Tx-3/MBI-8 | 76 | 6333 |
Fig. 6. (A) The catalytic activity of the CdS/Ti3C2Tx/MBI nanocomposites under various reaction conditions. (B) EPR spectra of CdS/Ti3C2Tx/MBI nanocomposites and DMPO. (C) Possible photocatalytic mechanism of CdS/Ti3C2Tx/MBI-mediated oxidative coupling of amines.
|
[1] | Xinlong Zheng, Yiming Song, Chongtai Wang, Qizhi Gao, Zhongyun Shao, Jiaxin Lin, Jiadi Zhai, Jing Li, Xiaodong Shi, Daoxiong Wu, Weifeng Liu, Wei Huang, Qi Chen, Xinlong Tian, Yuhao Liu. Properties, applications, and challenges of copper- and zinc-based multinary metal sulfide photocatalysts for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2025, 74(7): 22-70. |
[2] | Lifang Liu, Yejun Xiao, Xiangyang Guo, Shengye Jin, Fuxiang Zhang. Facets-controllable synthesis of metal-organic frameworks via one supersaturation strategy to insight intrinsic facets effect [J]. Chinese Journal of Catalysis, 2025, 73(6): 153-158. |
[3] | Jun Ma, Bing Xu, Shuo Cao, Shiyan Li, Wei Chu, Siglinda Perathoner, Gabriele Centi, Yuefeng Liu. Structural dynamics of Ni/Mo2CTx MXene catalysts under reaction modulate CO2 reduction performance [J]. Chinese Journal of Catalysis, 2025, 72(5): 243-253. |
[4] | Mingyang Xu, Zhenzhen Li, Rongchen Shen, Xin Zhang, Zhihong Zhang, Peng Zhang, Xin Li. Constructing S-scheme heterojunction between porphyrinyl covalent organic frameworks and Nb2C MXene for photocatalytic H2O2 production [J]. Chinese Journal of Catalysis, 2025, 70(3): 431-443. |
[5] | Hongfen Li, Yihe Zhang, Jianming Li, Qing Liu, Xiaojun Zhang, Youpeng Zhang, Hongwei Huang. Boosting H2O2 evolution of CdS via constructing a ternary photocatalyst with earth-abundant halloysite nanotubes and NiS co-catalyst [J]. Chinese Journal of Catalysis, 2025, 69(2): 111-122. |
[6] | Yang Zhang, Nengneng Xu, Bingbing Gong, Xiaoxiao Ye, Yi Yang, Zhaodi Wang, Biyan Zhuang, Min Wang, Woochul Yang, Guicheng Liu, Joong Kee Lee, Jinli Qiao. A visible-light-driven CoS2/CuS@CNT-C3N4 photocatalyst for high-performance rechargeable zinc-air batteries beyond 500 mW cm‒2 [J]. Chinese Journal of Catalysis, 2025, 68(1): 300-310. |
[7] | Jinlong Wang, Dongni Liu, Mingyang Li, Xiaoyi Gu, Shiqun Wu, Jinlong Zhang. Boosting CO2 photoreduction by synergistic optimization of multiple processes through metal vacancy engineering [J]. Chinese Journal of Catalysis, 2024, 63(8): 202-212. |
[8] | Lulu Sun, Shiyang Liu, Taifeng Liu, Dongqiang Lei, Nengchao Luo, Feng Wang. Engineering the coordination structure of Cu for enhanced photocatalytic production of C1 chemicals from glucose [J]. Chinese Journal of Catalysis, 2024, 63(8): 234-243. |
[9] | Weijie Ren, Ning Li, Qing Chang, Jie Wu, Jinlong Yang, Shengliang Hu, Zhenhui Kang. Abstracting photogenerated holes from covalent triazine frameworks through carbon dots for overall hydrogen peroxide photosynthesis [J]. Chinese Journal of Catalysis, 2024, 62(7): 178-189. |
[10] | Gaoxiong Liu, Rundong Chen, Bingquan Xia, Zhen Wu, Shantang Liu, Amin Talebian-Kiakalaieh, Jingrun Ran. Synthesis of H2O2 and high-value chemicals by covalent organic framework-based photocatalysts [J]. Chinese Journal of Catalysis, 2024, 61(6): 97-110. |
[11] | Tao Wen, Sisheng Guo, Hengxin Zhao, Yuqi Zheng, Xinyue Zhang, Pengcheng Gu, Sai Zhang, Yuejie Ai, Xiangke Wang. Nano-MnO2 anchored on exfoliated MXene with exceptional and stable Fenton oxidation performance for organic micropollutants [J]. Chinese Journal of Catalysis, 2024, 61(6): 215-225. |
[12] | Lele Wang, Wenyao Cheng, Jiaxin Wang, Juan Yang, Qinqin Liu. Construction of intramolecular and interfacial built-in electric field in a donor-acceptor conjugated polymers-based S-scheme heterojunction for high photocatalytic H2 generation [J]. Chinese Journal of Catalysis, 2024, 58(3): 194-205. |
[13] | Yucheng Jin, Xiaolin Liu, Chen Qu, Changjun Li, Hailong Wang, Xiaoning Zhan, Xinyi Cao, Xiaofeng Li, Baoqiu Yu, Qi Zhang, Dongdong Qi, Jianzhuang Jiang. Perylene diimide covalent organic frameworks super-reductant for visible light-driven reduction of aryl halides [J]. Chinese Journal of Catalysis, 2024, 57(2): 171-183. |
[14] | Wenjuan Zhang, Gang Liu. Solar-driven H2O2 synthesis from H2O and O2 over molecular engineered organic framework photocatalysts [J]. Chinese Journal of Catalysis, 2024, 66(11): 76-109. |
[15] | Jun Xu, Ying Luo, Qiaoqi Guo, Wenzheng Sun, Shanshan Chen, Zheng Wang, Hong He. Mg-doped SrTaO2N as a visible-light-driven H2-evolution photocatalyst for accelerated Z-scheme overall water splitting [J]. Chinese Journal of Catalysis, 2024, 65(10): 70-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||