Chinese Journal of Catalysis ›› 2024, Vol. 57: 171-183.DOI: 10.1016/S1872-2067(23)64592-9
• Articles • Previous Articles
Yucheng Jina, Xiaolin Liua, Chen Qua, Changjun Lib, Hailong Wanga,*(), Xiaoning Zhana, Xinyi Caoa, Xiaofeng Lib,*(
), Baoqiu Yua, Qi Zhanga, Dongdong Qia, Jianzhuang Jianga,*(
)
Received:
2023-10-17
Accepted:
2023-12-25
Online:
2024-02-18
Published:
2024-02-10
Contact:
* E-mail: Supported by:
Yucheng Jin, Xiaolin Liu, Chen Qu, Changjun Li, Hailong Wang, Xiaoning Zhan, Xinyi Cao, Xiaofeng Li, Baoqiu Yu, Qi Zhang, Dongdong Qi, Jianzhuang Jiang. Perylene diimide covalent organic frameworks super-reductant for visible light-driven reduction of aryl halides[J]. Chinese Journal of Catalysis, 2024, 57: 171-183.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64592-9
Fig. 1. PXRD data of USTB-21 (a) and USTB-22 (b) (experimental PXRD profile (black), refined profile (red), the difference between the experimental and refined PXRD (gray), and simulation pattern (cyan)). The simulated AA stacking structures of USTB-21 (c,d) and AB stacking structures of USTB-22 (e,f). SEM (g), TEM (h), and HRTEM (i,j) images of USTB-21. SEM (k), TEM (l), and HRTEM (m,n) images of USTB-22.
Fig. 2. (a) Comparison of catalytic performances in various catalysts. (b) Calculated energies and electronic charge densities of the HOMO and LUMO of DPPDI, USTB-21 and USTB-22. (c) The time-dependent electronic absorption spectra of USTB-22 in DMF and Et3N. (d) The fs-TA spectra of homogeneous DPPDI radical anion excited by 700 nm laser. (e) The fs-TA spectra of USTB-21 radical anion excited by 700 nm laser. (f) The fs-TA spectra of USTB-22 radical anion excited by 700 nm laser. (g) The kinetic trace of DPPDI radical anion excited state at 570 nm. (h) The kinetic trace of USTB-21 radical anion excited state at 570 nm. (i) The kinetic trace of USTB-22 radical anion excited state at 570 nm.
Entry | Substrate | Conversion b (%) | Time (h) |
---|---|---|---|
1 | ![]() | 96/98 | 3 |
2 | ![]() | 92/96 | 3 |
3 | ![]() | 82/98 | 3 |
4 | ![]() | 91/99 | 3 |
5 | ![]() | 91/99 | 3 |
6 | ![]() | 98/99 | 3 |
7 | ![]() | 92/99 | 3 |
8 | ![]() | 60/72 | 8 |
9 | ![]() | 75/88 | 3 |
10 | ![]() | 94/97 | 5 |
11 | ![]() | 71/79 | 10 |
Table 1 Photoreduction of various aryl halides by USTB-21 and USTB-22 a.
Entry | Substrate | Conversion b (%) | Time (h) |
---|---|---|---|
1 | ![]() | 96/98 | 3 |
2 | ![]() | 92/96 | 3 |
3 | ![]() | 82/98 | 3 |
4 | ![]() | 91/99 | 3 |
5 | ![]() | 91/99 | 3 |
6 | ![]() | 98/99 | 3 |
7 | ![]() | 92/99 | 3 |
8 | ![]() | 60/72 | 8 |
9 | ![]() | 75/88 | 3 |
10 | ![]() | 94/97 | 5 |
11 | ![]() | 71/79 | 10 |
Entry | Substrate | Yield (%) | Time (h) |
---|---|---|---|
1 | ![]() | 71 | 12 |
2 | ![]() | 68 | 12 |
3 | ![]() | 85 | 12 |
4 | ![]() | 61 | 24 |
5 | ![]() | 54 | 24 |
6 | ![]() | 67 | 20 |
7 | ![]() | 61 | 20 |
8c | ![]() | 34 | 24 |
9 | ![]() | 39 | 24 |
Table 2 Photoredox catalytic borylation by USTB-22.
Entry | Substrate | Yield (%) | Time (h) |
---|---|---|---|
1 | ![]() | 71 | 12 |
2 | ![]() | 68 | 12 |
3 | ![]() | 85 | 12 |
4 | ![]() | 61 | 24 |
5 | ![]() | 54 | 24 |
6 | ![]() | 67 | 20 |
7 | ![]() | 61 | 20 |
8c | ![]() | 34 | 24 |
9 | ![]() | 39 | 24 |
Fig. 3. (a) Proposed conPET reaction mechanism. (b) The Gibbs free energy of photocatalytic reaction based on TTF-PDI molecule as a model of USTB-22 for the reduction of 4-bromoacetophenone as an example of aryl halides.
|
[1] | Yong Zhang, Junyi Qiu, Bicheng Zhu, Guotai Sun, Bei Cheng, Linxi Wang. Hollow spherical covalent organic framework supported gold nanoparticles for photocatalytic H2O2 production [J]. Chinese Journal of Catalysis, 2024, 57(2): 143-153. |
[2] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[3] | Xin Yuan, Hai-Bin Fan, Jie Liu, Long-Zhou Qin, Jian Wang, Xiu Duan, Jiang-Kai Qiu, Kai Guo. Recent advances in photoredox catalytic transformations by using continuous-flow technology [J]. Chinese Journal of Catalysis, 2023, 50(7): 175-194. |
[4] | Mengistu Tulu Gonfa, Sheng Shen, Lang Chen, Biao Hu, Wei Zhou, Zhang-Jun Bai, Chak-Tong Au, Shuang-Feng Yin. Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol [J]. Chinese Journal of Catalysis, 2023, 49(6): 16-41. |
[5] | Ning Li, Xueyun Gao, Junhui Su, Yangqin Gao, Lei Ge. Metallic WO2-decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 161-170. |
[6] | Fan-Lin Zeng, Hu-Lin Zhu, Ru-Nan Wang, Xiao-Ya Yuan, Kai Sun, Ling-Bo Qu, Xiao-Lan Chen, Bing Yu. Bismuth vanadate: A versatile heterogeneous catalyst for photocatalytic functionalization of C(sp2)-H bonds [J]. Chinese Journal of Catalysis, 2023, 46(3): 157-166. |
[7] | Chaochen Shao, Qing He, Mochun Zhang, Lin Jia, Yujin Ji, Yongpan Hu, Youyong Li, Wei Huang, Yanguang Li. A covalent organic framework inspired by C3N4 for photosynthesis of hydrogen peroxide with high quantum efficiency [J]. Chinese Journal of Catalysis, 2023, 46(3): 28-35. |
[8] | Yang Sun, Jan E. Szulejko, Ki-Hyun Kim, Vanish Kumar, Xiaowei Li. Recent advances in the development of bismuth-based materials for the photocatalytic reduction of hexavalent chromium in water [J]. Chinese Journal of Catalysis, 2023, 55(12): 20-43. |
[9] | Ningning Wang, Shuo Wang, Can Li, Chenyang Li, Chunjiang Liu, Shanshan Chen, Fuxiang Zhang. ZrO2 modification of homogeneous nitrogen-doped oxide MgTa2O6-xNx for promoted photocatalytic water splitting [J]. Chinese Journal of Catalysis, 2023, 54(11): 220-228. |
[10] | Weixu Liu, Chang He, Bowen Zhu, Enwei Zhu, Yaning Zhang, Yunning Chen, Junshan Li, Yongfa Zhu. Progress in wastewater treatment via organic supramolecular photocatalysts under sunlight irradiation [J]. Chinese Journal of Catalysis, 2023, 53(10): 13-30. |
[11] | Yiming Lei, Jinhua Ye, Jordi García-Antón, Huimin Liu. Recent advances in the built-in electric-field-assisted photocatalytic dry reforming of methane [J]. Chinese Journal of Catalysis, 2023, 53(10): 72-101. |
[12] | Xiangyu Meng, Rui Li, Junyi Yang, Shiming Xu, Chenchen Zhang, Kejia You, Baochun Ma, Hongxia Guan, Yong Ding. Hexanuclear ring cobalt complex for photochemical CO2 to CO conversion [J]. Chinese Journal of Catalysis, 2022, 43(9): 2414-2424. |
[13] | Hui Yang, Kai Dai, Jinfeng Zhang, Graham Dawson. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications [J]. Chinese Journal of Catalysis, 2022, 43(8): 2111-2140. |
[14] | Yu-Lan Wu, Ming-Yu Qi, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution over CdS/WO3 composites [J]. Chinese Journal of Catalysis, 2022, 43(7): 1851-1859. |
[15] | Fangshuai Chen, Chongbei Wu, Gengfeng Zheng, Liangti Qu, Qing Han. Few-layer carbon nitride photocatalysts for solar fuels and chemicals: Current status and prospects [J]. Chinese Journal of Catalysis, 2022, 43(5): 1216-1229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||