Chinese Journal of Catalysis ›› 2025, Vol. 78: 343-353.DOI: 10.1016/S1872-2067(25)64813-3
• Articles • Previous Articles
Shu-Hu Yina,1, Xiao-Yang Chengb,1, Yu Hanb, Ting Zhua,*(
), Zhong-Wei Yua, Rui Huangb,*(
), Jun Xua,*(
), Yan-Xia Jiangb,*(
), Shi-Gang Sunb
Received:2025-05-31
Accepted:2025-07-17
Online:2025-11-18
Published:2025-10-14
Contact:
*E-mail: cmzhuting@ntu.edu.cn (T. Zhu), rhuang@xmu.edu.cn (R. Huang), xjun@ntu.edu.cn (J. Xu), yxjiang@xmu.edu.cn (Y. Jiang).
About author:1Contributed equally to this work.
Supported by:Shu-Hu Yin, Xiao-Yang Cheng, Yu Han, Ting Zhu, Zhong-Wei Yu, Rui Huang, Jun Xu, Yan-Xia Jiang, Shi-Gang Sun. Proximity-engineered Ru single-atom sites modulate Fe-N4 spatial distortion for enhanced acidic oxygen reduction reaction[J]. Chinese Journal of Catalysis, 2025, 78: 343-353.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64813-3
Fig. 1. (a) Diagram for M-Fe dual sites (M = Mn, Co, Ni, Cu, Ru). The atomic tensile strain (ε) (b), Bader charge (c) and d-band center (d) of Fe atom for different M-Fe dual sites.
Fig. 2. (a) Synthetic route of the RuFe-N-C catalyst. (b) AC-STEM image of RuFe-N-C catalyst. (c) The intensity profiles obtained on dual Ru-Fe sites in yellow circled zone of (b). (d) Comfirmation of bimetallic Ru-Fe sites by EELS. (e) HAADF-STEM image and elemental mapping images.
Fig. 3. Local structure analysis of on bimetallic Ru-Fe sites. (a) Fe K-edge XANES spectra. (b) Ru K-edge XANES spectra. (c) Fe K-edge FT-EXAFS spectra. (d) Ru K-edge FT-EXAFS spectra. Fe K-edge EXAFS fitting analysis in R space for FePc reference (e) and RuFe-N-C (f). Fe K-edge (g) and Ru K-edge (h) WT-EXAFS contour plots of RuFe-N-C and standard samples.
Fig. 5. Enhancement mechanism of ORR activity. (a) SD values. TOF at 0.80 and 0.85 V vs. RHE (b), jk at 0.82 V (c) and H2O2 yields (d) of different catalysts; Isoactivity plots at 0.80 V (c) and 0.85 V (d) comparing the ORR performance metric of the RuFe-N-C to recently reported five benchmark Fe-N-C [32].
Fig. 6. ORR stability evaluation of the catalysts. (a) LSV curves after stability tests with 10,000 cycles of Ru-N-C, Fe-N-C and RuFe-N-C. (b) Reaction between ROS and ABTS. (c) UV-vis absorption spectra of 0.1 mol L-1 HClO4 include Benchmark, Ru-N-C, Fe-N-C and RuFe-N-C. (d) The absorbance difference at 417 nm after subtraction of the benchmark value. (e) Possible stability enhancement mechanism of RuFe-N-C.
Fig. 7. Performance tests with RuFe-N-C, Fe-N-C and Ru-N-C as the cathodic catalysts in a single-cell PEMFCs. H2-O2 (a) and H2-air (b) PEMFCs polarization curves. Test conditions: cathode, Fe-N-C with 3.5 mgcat cm-2 loading; anode, commercial Pt/Canode with 0.4 mgPt cm-2 (Alfa Aesar, Johnson Matthey); Nafion 211 membrane; H2 0.3 L min-1 and O2 0.4 L min-1 feed; 100% relative humidity (RH); 150 kPa absolute partial pressure H2 and O2; cell temperature, 80 °C; electrode area, 4.41 cm2. The cell voltage and power density are not iR corrected.
|
| [1] | Yu Chengwen, Liang Lecheng, Mu Zhangyan, Yin Shaoqi, Liu Yuwen, Chen Shengli. FeNC shell-stabilized L10-PtFe intermetallic nanoparticles for high-performance oxygen reduction [J]. Chinese Journal of Catalysis, 2025, 75(8): 125-136. |
| [2] | Yan Huangli, Yu Chengwen, Zhang Xianming, Tang Meihua, Chen Shengli. Three-fold optimization of Pt/ionomer interface by ionic liquid-modified MOF-808 in cathode of proton exchange membrane fuel cells [J]. Chinese Journal of Catalysis, 2025, 75(8): 84-94. |
| [3] | Lin Xu, Li Danyang, Huang Shiqing, Sun Panpan, Huang Yan, Wang Shitao, Zheng Lirong, Cao Dapeng. Se-doping strategy regulating mass transfer and electronic structure of Fe-N-C electrocatalysts for proton exchange membrane fuel cells [J]. Chinese Journal of Catalysis, 2025, 75(8): 73-83. |
| [4] | Chenhao Li, Hao Wang, Weiwei Wang, Shuo Bai, Zhongbin Gong, Qinqin Sang, Yuqing Zhang, Feng Huo, Yanrong Liu. PtCu nano-dendrites with enhanced stability in proton exchange membrane fuel cells [J]. Chinese Journal of Catalysis, 2025, 73(6): 322-333. |
| [5] | Yao Yao, Juping Xu, Minhua Shao. Competitions between hydrogen evolution reaction and oxygen reduction reaction on an Au surface [J]. Chinese Journal of Catalysis, 2025, 73(6): 271-278. |
| [6] | Siming Li, Enyang Sun, Pengfei Wei, Wei Zhao, Suizhu Pei, Ying Chen, Jie Yang, Huili Chen, Xi Yin, Min Wang, Yawei Li. Impregnation of ionic liquid into porous Fe-N-C electrocatalyst to improve electrode kinetics and mass transport for polymer electrolyte fuel cells [J]. Chinese Journal of Catalysis, 2025, 72(5): 277-288. |
| [7] | Mingjia Lu, Jinhui Liang, Binwen Zeng, Wei Li, Yunqi Li, Qinqxin Wang, Yuhuai Li, Hong Chen, Jianzheng Li, Yangyang Chen, Lecheng Liang, Li Du, Yan Xiang, Shijun Liao, Zhiming Cui. Mesoporous bowl-like carbon support for boosting oxygen transport of fuel cell cathode [J]. Chinese Journal of Catalysis, 2025, 72(5): 254-265. |
| [8] | Haotian Guo, Lulu Zhao, Xinyu Liu, Jing Li, Pengfei Wang, Zonglin Liu, Linlin Wang, Jie Shu, Tingfeng Yi. Electrospinning technology combined with MOFs: Bridging the development of high-performance zinc-air batteries [J]. Chinese Journal of Catalysis, 2025, 79(12): 32-67. |
| [9] | Baofa Liu, Weijie Pan, Zhiyang Huang, Yi Zhao, Zuyang Luo, Tayirjan Taylor Isimjan, Bao Wang, Xiulin Yang. Unlocking 5300-h ultrastable metal-free ORR catalysts for Zn-air batteries via F-N co-doped tailored carbon pore architectures and synergistic adsorption modulation [J]. Chinese Journal of Catalysis, 2025, 79(12): 100-111. |
| [10] | Ruilin Cao, Yuan Pan, Xiansheng Zhang, Xinyi Huang, Teng Li, Sheng Liu, Yunze Wang, Shanqing Tang, Binbin Shao, Zhifeng Liu. The application of photocatalysis and biodegradation synergistic systems in environmental remediation: A review [J]. Chinese Journal of Catalysis, 2025, 78(11): 47-74. |
| [11] | Yun-Fei Xia, Bo Liu, Zi-Yu Zhang, Zi-Gang Zhao, Pan Guo, Si Lin, Bing Liu, Yan Wang, Yun-Long Zhang, Lei Zhao, Li-Guang Wang, Zhen-Bo Wang. Ultrafine L10 PtFeZn intermetallics via a two-step annealing process for oxygen reduction reaction: Decoupling alloying and ordering stages [J]. Chinese Journal of Catalysis, 2025, 78(11): 324-335. |
| [12] | Tianyou Zhao, Fengming Hu, Meiqi Zhu, Chang-Jie Yang, Xin-Yu Wang, Yong-Zhou Pan, Jiarui Yang, Xia Zhang, Wen-Hao Li, Dingsheng Wang. Future development of single-atom catalysts in portable energy and sensor technologies [J]. Chinese Journal of Catalysis, 2025, 78(11): 100-137. |
| [13] | Xinqi Wang, Xueyuan Zhang, Menggai Jiao, Runlin Ma, Fang Xie, Hao Wan, Xiangjian Shen, Li-Li Zhang, Wei Ma, Zhen Zhou. The strong Pt-N3O coordination in graphene nanosheets accelerates the 4e− electrocatalytic oxygen reduction process [J]. Chinese Journal of Catalysis, 2025, 77(10): 227-235. |
| [14] | Wenhui Qi, Xiuyan Li, Shaonan Gu, Bin Sun, Yinan Wang, Guowei Zhou. Electronic structure modulation of metal based organic catalysts for photocatalytic H2O2 production [J]. Chinese Journal of Catalysis, 2025, 77(10): 45-69. |
| [15] | Rui Chen, Xiang Fang, Dongfang Zhang, Lanqi He, Yinlong Wu, Chenghua Sun, Kun Wang, Shuqin Song. In-situ construction of three-dimensional ordered cobalt-nitrogen- carbon nanotubes integrated self-supporting electrode for efficiently electrocatalyzing oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2024, 61(6): 237-246. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||