Previous Articles Next Articles
Lin Liua,b,1, Jun Chena,b,1, Ailong Lic, Shuang Kongd, Ying Zhanga, Yafei Qiaoa,b, Pengfei Zhanga, Can Lia,b,*, Hongxian Hana,*,
Received:2025-07-24
Accepted:2025-07-24
Contact:
*E-mail: canli@dicp.ac.cn (C. Li), hxhan@ybu.edu.cn (H. Han).
About author:1Contributed to this work equally.Supported by:Lin Liu, Jun Chen, Ailong Li, Shuang Kong, Ying Zhang, Yafei Qiao, Pengfei Zhang, Can Li, Hongxian Han. Harmonization of acidic OER activity and stability of ruthenium-manganese oxide by optimization of amorphous-crystalline heterostructure[J]. Chinese Journal of Catalysis, DOI: 10.1016/S1872-2067(25)64850-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64850-9
| [1] R. Bhandari, N. Adhikari,Int.J.Hydrogen Energy, 2024, 82, 923-951. [2] S. Sikiru, T. L. Oladosu, T. I. Amosa, J. O. Olutoki, M. N. M.Ansari, K. J. Abioye, Z. U. Rehman, H. Soleimani,Int.J.Hydrogen Energy, 2024, 56, 1152-1182. [3] S. G. Nnabuife, A. K. Hamzat, J. Whidborne, B. Kuang, K. W. Jenkins,Int.J.Hydrogen Energy, 2025, 107, 218-240. [4] J. Wang, J. Wen, J. Wang, B. Yang, L. Jiang,Renew.Sustain.Energy Rev., 2024, 203, 114779. [5] S. Shiva Kumar, H. Lim,Energy Rep., 2022, 8, 13793-13813. [6] S. Sebbahi, N. Nabil, A. Alaoui-Belghiti, S. Laasri, S. Rachidi, A. Hajjaji,Mater.Today Proc., 2022, 66, 140-145. [7] T. Wang, X. Cao, L. Jiao,Carbon Neutrality, 2022, 1, 21. [8] J. Chi, H. Yu,Chin.J.Catal., 2018, 39, 390-394. [9] X. Shi, X. Qiu, Z. Yuan, R. Zhang, K. Zhao, A. Tan, G. Xu, J. Song, J. Liu,ACS Appl.Mater.Interfaces, 2024, 16, 66089-66098. [10] S. Hu, S. Ge, H. Liu, X. Kang, Q. Yu, B. Liu,Adv.Funct.Mater., 2022, 32, 2201726. [11] J. Gao, Y. Liu, B. Liu, K.-W. Huang,ACS Nano, 2022, 16, 17761-17777. [12] L. She, G. Zhao, T. Ma, J. Chen, W. Sun, H. Pan,Adv.Funct.Mater., 2022, 32, 2108465. [13] Z. Lei, T. Wang, B. Zhao, W. Cai, Y. Liu, S. Jiao, Q. Li, R. Cao, M. Liu,Adv.Energy Mater., 2020, 10, 2000478. [14] Z.-Y. Wu, F.-Y. Chen, B. Li, S.-W. Yu, Y. Z. Finfrock, D. M. Meira, Q.-Q. Yan, P. Zhu, M.-X. Chen, T.-W. Song, Z. Yin, H.-W. Liang, S. Zhang, G. Wang, H. Wang,Nat.Mater., 2023, 22, 100-108. [15] D. Chen, H. Zhao, R. Yu, K. Yu, J. Zhu, J. Jiao, X. Mu, J. Yu, J. Wu, S. Mu,Energy Environ.Sci., 2024, 17, 1885-1893. [16] N. Hodnik, P. Jovanovič, A. Pavlišič, B. Jozinović, M. Zorko, M. Bele, V. S. Šelih, M. Šala, S. Hočevar, M. Gaberšček,J.Phys.Chem.C, 2015, 119, 10140-10147. [17] J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao, M. Ni,ACS Catal., 2019, 9, 9973-10011. [18] I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl,ChemCatChem, 2011, 3, 1159-1165. [19] A. Tan, B. Pang, J. Song, X. Qiu, C. Ju, P. Liu, J. Li, J. Liu,Chem.Eng.Sci., 2024, 293, 120083. [20] H. Sun, W. Jung,J.Mater.Chem.A, 2021, 9, 15506-15521. [21] J. Wang, Y. Ji, R. Yin, Y. Li, Q. Shao, X. Huang,J.Mater.Chem.A, 2019, 7, 6411-6416. [22] J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao, Z. Tian, G. Chen, L. Chen,Adv.Mater., 2018, 30, 1801351. [23] S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao, S. Gong, S. Liu, M. Huang, H. Wang, Q. Chen,ACS Catal., 2020, 10, 1152-1160. [24] Y.-J. Ko, M. H. Han, C. Lim, S.-H. Yu, C. H. Choi, B. K. Min, J.-Y. Choi, W. H. Lee, H.-S. Oh,J.Energy Chem., 2023, 77, 54-61. [25] Y. Tian, S. Wang, E. Velasco, Y. Yang, L. Cao, L. Zhang, X. Li, Y. Lin, Q. Zhang, L. Chen,iScience, 2020, 23, 100756. [26] C. Rong, K. Dastafkan, Y. Wang, C. Zhao,Adv.Mater., 2023, 35, 2211884. [27] G. Wu, X. Zheng, P. Cui, H. Jiang, X. Wang, Y. Qu, W. Chen, Y. Lin, H. Li, X. Han, Y. Hu, P. Liu, Q. Zhang, J. Ge, Y. Yao, R. Sun, Y. Wu, L. Gu, X. Hong, Y. Li,Nat.Commun., 2019, 10, 4855. [28] Y. Zhang, Y. Zhang, Z. Zeng, D. Ho,Mater.Horiz., 2023, 10, 2904-2912. [29] C. Wang, Q. Geng, L. Fan, J.-X. Li, L. Ma, C. Li,Nano Res.Energy, 2023, 2, e9120070. [30] G. Kresse, J. Furthmüller,Comput.Mater.Sci., 1996, 6, 15-50. [31] G. Kresse, J. Furthmüller,Phys.Rev.B, 1996, 54, 11169-11186. [32] G. Kresse, J. Hafner,Phys.Rev.B, 1993, 47, 558-561. [33] J. Hafner,J.Comput.Chem., 2008, 29, 2044-2078. [34] G. Kresse, D. Joubert,Phys.Rev.B, 1999, 59, 1758-1775. [35] P. E. Blöchl,Phys.Rev.B, 1994, 50, 17953-17979. [36] J. P. Perdew, K. Burke, M. Ernzerhof,Phys.Rev.Lett., 1996, 77, 3865-3868. [37] H. J. Monkhorst, J. D. Pack,Phys.Rev.B, 1976, 13, 5188-5192. [38] S. Grimme, J. Antony, S. Ehrlich, H. Krieg,J.Chem.Phys., 2010, 132, 154104. [39] S. Grimme, S. Ehrlich, L. Goerigk,J.Comput.Chem., 2011, 32, 1456-1465. [40] A. Devadas, S. Baranton, T. W. Napporn, C. Coutanceau,J.Power Sources, 2011, 196, 4044-4053. [41] A. V. Korotcov, Y.-S. Huang, K.-K. Tiong, D.-S. Tsai,J.Raman Spectrosc., 2007, 38, 737-749. [42] Y. Wang, R. Yang, Y. Ding, B. Zhang, H. Li, B. Bai, M. Li, Y. Cui, J. Xiao, Z.-S. Wu, Nat. Commun., 2023, 14, 1412. [43] H. Liu, Z. Zhang, J. Fang, M. Li, M. G. Sendeku, X. Wang, H. Wu, Y. Li, J. Ge, Z. Zhuang, D. Zhou, Y. Kuang, X. Sun,Joule, 2023, 7, 558-573. [44] J. Gao, X. Wu, X. Teng, J. Xin, S. L. J.Yun, H. Zhao, J. Li, J. Zhang,Catal.Today, 2024, 433, 114660. [45] R. Huang, Y. Wen, H. Peng, B. Zhang,Chin.J.Catal., 2022, 43, 130-138. [46] C.-H. Li, C.-Z. Yuan, X. Huang, H. Zhao, F. Wu, L. Xin, X. Zhang, S. Ye, Y. Chen,eScience, 2025, 5, 100307. [47] L. Zhang, H. Jang, H. Liu, M. G. Kim, D. Yang, S. Liu, X. Liu, J. Cho,Angew.Chem.Int.Ed., 2021, 60, 18821-18829. [48] E. Chalmin, F. Farges, G. E.Brown Jr,Contrib.Mineral.Petrol., 2009, 157, 111-126. [49] J. Yano, V. K. Yachandra,Photosynth.Res., 2009, 102, 241-254. [50] K. Wang, Y. Wang, B. Yang, Z. Li, X. Qin, Q. Zhang, L. Lei, M. Qiu, G. Wu, Y. Hou,Energy Environ.Sci., 2022, 15, 2356-2365. [51] Y. Wang, X. Lei, B. Zhang, B. Bai, P. Das, T. Azam, J. Xiao, Z.-S. Wu,Angew.Chem.Int.Ed., 2024, 63, e202316903. [52] Y. Wen, P. Chen, L. Wang, S. Li, Z. Wang, J. Abed, X. Mao, Y. Min, C. T. Dinh, P. De Luna, R. Huang, L. Zhang, L. Wang, L. Wang, R. J. Nielsen, H. Li, T. Zhuang, C. Ke, O. Voznyy, Y. Hu, Y. Li, W. A. Goddard, B. Zhang, H. Peng, E. H. Sargent,J.Am.Chem.Soc., 2021, 143, 6482-6490. [53] Z. Li, H. Sheng, Y. Lin, H. Hu, H. Sun, Y. Dong, X. Chen, L. Wei, Z. Tian, Q. Chen, J. Su, L. Chen,Adv. Funct. Mater., 2024, 34, 2409714. [54] K. Klyukin, A. Zagalskaya, V. Alexandrov,J.Phys.Chem.C, 2019, 123, 22151-22157. [55] G. Zhao, W. Guo, M. Shan, Y. Fang, G. Wang, M. Gao, Y. Liu, H. Pan, W. Sun,Adv.Mater., 2024, 36, 2404213. |
| [1] | Yu Tang, Yang Chen, Kerun Chen, Edmund Qi, Xiaoyang Liu, Haiyan Lu, Yu Gao. Cu-Mo synergistic doping of metal-organic framework double-shelled hollow nanospheres: Surface reconstruction activates adsorbate evolution and lattice oxygen mechanisms [J]. Chinese Journal of Catalysis, 2026, 81(2): 159-171. |
| [2] | Hui-Min Xu, Xiao-Qi Gong, Kai-Hang Yue, Chen-Jin Huang, Hong-Rui Zhu, Lian-Jie Song, Gao-Ren Li. Fe and Co bimetallic single-atoms coordinated by N and Te as bifunctional oxygen reduction/evolution catalysts for high-performance zinc-air battery [J]. Chinese Journal of Catalysis, 2026, 81(2): 319-332. |
| [3] | Haihong Zhong, Qianqian Xu, Weiting Yang, Nicolas Alonso-Vante, Yongjun Feng. Composition regulation of iron-group transition metal chalcogenides for the oxygen electrocatalysis: Electronic structure and surface reconstruction [J]. Chinese Journal of Catalysis, 2026, 81(2): 37-68. |
| [4] | Xiaofeng Chen, Yixuan Huang, Wanbin Lin, Jiaojiao Xia, Xirui Zhang, Wenjie Gong, Chuqian Jian, Hao Liu, Jiacheng Zeng, Jiang Liu, Yu Chen. Mn-doping induced phase segregation of air electrodes enables high-performance and durable reversible protonic ceramic cells [J]. Chinese Journal of Catalysis, 2026, 81(2): 333-343. |
| [5] | Zhouzhou Wang, Qiancheng Zhou, Li Luo, Yaran Shi, Haoran Li, Chunchun Wang, Kesheng Lin, Chengsi Wang, Libing Zhu, Linyun Han, Zhuo Xing, Ying Yu. Suppressing catalyst reconstruction in neutral electrolyte: stabilizing Co-O-Mo point-to-point connection of cobalt molybdate by tungsten doping for oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 76(9): 146-158. |
| [6] | Zhang Bingjie, Wang Chunyan, Yang Fulin, Wang Shuli, Feng Ligang. Work function-induced spontaneous built-in electric field in Ir/MoSe2 for efficient PEM water electrolysis [J]. Chinese Journal of Catalysis, 2025, 75(8): 95-104. |
| [7] | Xiaoyang Wang, Ziqi Fu, Ziyi Luo, Weidi Liu, Jia Ding, Jianrong Zeng, Yanan Chen, Wenbin Hu. Simultaneously achieving ultrahigh loading and ultrasmall particle size of Pt/C catalysts [J]. Chinese Journal of Catalysis, 2025, 74(7): 425-437. |
| [8] | Ji’ao Dai, Jinglin Xian, Kaisi Liu, Zhiao Wu, Miao Fan, Shutong Qin, Huiyu Jiang, Weilin Xu, Huanyu Jin, Jun Wan. Unconventional metastable cubic 2D LaMnO3 for efficient alkaline seawater oxygen evolution [J]. Chinese Journal of Catalysis, 2025, 74(7): 228-239. |
| [9] | Zhixing Guan, Ying Zhang, Fangfang Feng, Zhaohui Li, Yanli Liu, Zifeng Wu, Xingxing Zheng, Xionghui Fu, Yuanming Zhang, Wenbin Liao, Jialu Chen, Hongguang Liu, Yi Zhu, Yongge Wei. Boost proton transfer in water oxidation by constructing local electric fields on BiVO4 photoanodes [J]. Chinese Journal of Catalysis, 2025, 72(5): 176-186. |
| [10] | Pengxiang Zhang, Jiawen Wang, Tianyu Yang, Ruizhe Wang, Ruofan Shen, Zhikun Peng, Yanyan Liu, Xianli Wu, Jianchun Jiang, Baojun Li. Unveiling complexities: Reviews on insights into the mechanism of oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 72(5): 48-83. |
| [11] | Liyuan Xiao, Xue Bai, Jingyi Han, Zhenlu Wang, Jingqi Guan. Tuning d-band electronic structure of Ni-Fe oxyhydroxides via doping engineering boosts seawater oxidation performance [J]. Chinese Journal of Catalysis, 2025, 71(4): 340-352. |
| [12] | Bo Zhang, Ru Xiao, Liyuan Liu, Xiaobin Liu, Ying Deng, Qingliang Lv, Zexing Wu, Yunmei Du, Yanyan Li, Zhenyu Xiao, Lei Wang. Electrochemistry assisted chlorine corrosion strategy: The minute-level fabrication of lattice Cl- functioned high spin-polarized Ni/Fe-LDH array for enhanced anti-Cl- OER performance [J]. Chinese Journal of Catalysis, 2025, 70(3): 388-398. |
| [13] | Yimeng Sun, Jun Chen, Lin Liu, Haibo Chi, Hongxian Han. The mechanism of OER activity and stability enhancement in acid by atomically doped iridium in γ-MnO2 [J]. Chinese Journal of Catalysis, 2025, 69(2): 99-110. |
| [14] | Mingxing Chen, Zihe Du, Nian Liu, Huijie Li, Jing Qi, Enbo Shangguan, Jing Li, Jiahao Cao, Shujiao Yang, Wei Zhang, Rui Cao. Cation and anion modulation activates lattice oxygen for enhanced oxygen evolution [J]. Chinese Journal of Catalysis, 2025, 69(2): 282-291. |
| [15] | Yuhui Chen, Congbao Guo, Yi Wang, Kun Wang, Shuqin Song. Constructing high-entropy spinel oxide thin films via magnetron sputtering for efficiently electrocatalyzing alkaline oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 77(10): 210-219. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||