Chinese Journal of Catalysis ›› 2026, Vol. 81: 159-171.DOI: 10.1016/S1872-2067(25)64862-5
• Article • Previous Articles Next Articles
Yu Tanga, Yang Chenb, Kerun Chena, Edmund Qia, Xiaoyang Liub(
), Haiyan Lub(
), Yu Gaoa(
)
Received:2025-06-23
Accepted:2025-08-28
Online:2026-02-18
Published:2025-12-26
Contact:
*E-mail: yugao@jlu.edu.cn (Y. Gao),luhy@jlu.edu.cn (H. Lu),liuxy@jlu.edu.cn (X. Liu).
Supported by:Yu Tang, Yang Chen, Kerun Chen, Edmund Qi, Xiaoyang Liu, Haiyan Lu, Yu Gao. Cu-Mo synergistic doping of metal-organic framework double-shelled hollow nanospheres: Surface reconstruction activates adsorbate evolution and lattice oxygen mechanisms[J]. Chinese Journal of Catalysis, 2026, 81: 159-171.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64862-5
Fig. 2. Synthesis and structural characterizations of CCZMS. SEM images of CCG (a), CCZ-36 (b) and CCZMS-4 (c). TEM images of CCZ-36 (d), CCZM (e) and CCZMS-4 (f). (g) Elemental mapping images of CCZ-36. (h)Elemental mapping images of CCZMS-4.
Fig. 3. The Cu K-edge XANES spectra (a) and Fourier transform (FT) of the Cu K-edge EXAFS spectra (d) of Cu foil, and CuCo2S4/MoS2. The Co K-edge XANES spectra (b) and FT of the Co K-edge EXAFS spectra (e) of Co foil, and CuCo2S4/MoS2. The Mo K-edge XANES spectra (c) and FT of the Mo K-edge EXAFS spectra (f) of Mo foil, and CuCo2S4/MoS2. (g) The Cu K-edge EXAFS fitting results in k-space for CuCo2S4/MoS2. (h) The Co K-edge EXAFS fitting results in k-space for CuCo2S4/MoS2. (i) The Mo K-edge EXAFS fitting results in k-space for CuCo2S4/MoS2. (j) Wavelet transform-EXAFS at Cu K-edge of CuCo2S4. (k) WT-EXAFS at Co K-edge of CuCo2S4. (l) WT-EXAFS at Mo K-edge of CuCo2S4.
Fig. 4. Electrochemical performances of the as-prepared electrocatalysts in 1.0 mol L−1 KOH. Linear sweep voltammetry (LSV) curves (a) and Tafel plots (b) of CCZS, CCZMS and RuO2. (c) Cdl values of CCZS, CCZMS and RuO2 towards OER from current density versus the scan rate. (d) Experimental and theoretical value of gas production. Electrolyte: 1 mol L−1 KOH. (e) The overpotentials to achieve the current densities of 50 and 100 mA cm−2. (f) Optical image of the AEM water splitting device. (g) Performance comparison of CCZMS-4 with reported OER catalysts in the alkaline electrolyte. (h) Durability test of the AEM water splitting device with Pt/C||CCZMS-4 at 0.5 A cm−2.
Fig. 5. (a) CuCo2S4/MoS2 in electrolytes with different pH conditions. (b) OER polarization curves of catalysts in 1 mol L−1 KOH and 1 mol L−1 TMAOH, respectively, without iR compensation. (c) The relationship between the logarithm of current density of catalysts at the potential of 1.7 V versus RHE and pH. (d) In-situ Raman spectra of CuCo2S4/MoS2. (e) In-situ ATR-FTIR spectra of CuCo2S4/MoS2. (f) Mass signals of O2 products for 18O-labeled CCZMS.
Fig. 6. (a−c) Free energies of OER steps via AEM and LOM pathways on CuMo-CoO2 at 1.23 V. (d−f) pDOS of CuMo-CoO2 slabs. (g) Schematic energy bands of CoOOH and Mn-CoO2 slabs. (g) Schematic illustration of the proposed overall OER pathway for CuMo-CoOOH catalyst. (h) Schematic illustration of the proposed overall OER pathway for CuMo-CoO2 catalyst. (i) The COHP plots. (j,k) Configuration diagram of COHP.
|
| [1] | Hui-Min Xu, Xiao-Qi Gong, Kai-Hang Yue, Chen-Jin Huang, Hong-Rui Zhu, Lian-Jie Song, Gao-Ren Li. Fe and Co bimetallic single-atoms coordinated by N and Te as bifunctional oxygen reduction/evolution catalysts for high-performance zinc-air battery [J]. Chinese Journal of Catalysis, 2026, 81(2): 319-332. |
| [2] | Haihong Zhong, Qianqian Xu, Weiting Yang, Nicolas Alonso-Vante, Yongjun Feng. Composition regulation of iron-group transition metal chalcogenides for the oxygen electrocatalysis: Electronic structure and surface reconstruction [J]. Chinese Journal of Catalysis, 2026, 81(2): 37-68. |
| [3] | Xiaofeng Chen, Yixuan Huang, Wanbin Lin, Jiaojiao Xia, Xirui Zhang, Wenjie Gong, Chuqian Jian, Hao Liu, Jiacheng Zeng, Jiang Liu, Yu Chen. Mn-doping induced phase segregation of air electrodes enables high-performance and durable reversible protonic ceramic cells [J]. Chinese Journal of Catalysis, 2026, 81(2): 333-343. |
| [4] | Zhouzhou Wang, Qiancheng Zhou, Li Luo, Yaran Shi, Haoran Li, Chunchun Wang, Kesheng Lin, Chengsi Wang, Libing Zhu, Linyun Han, Zhuo Xing, Ying Yu. Suppressing catalyst reconstruction in neutral electrolyte: stabilizing Co-O-Mo point-to-point connection of cobalt molybdate by tungsten doping for oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 76(9): 146-158. |
| [5] | Yang Chen, Yu Tang, Leiyun Han, Jiayan Liu, Yingjie Hua, Xudong Zhao, Xiaoyang Liu. Dual-shell hollow nanospheres NiCo2S4@CoS2/MoS2: Enhancing catalytic activity for oxygen evolution reaction and achieving water splitting via the unique synergistic effects of mechanisms of adsorption-desorption and lattice oxygen oxidation [J]. Chinese Journal of Catalysis, 2025, 74(7): 394-410. |
| [6] | Jiangyu Tang, Xiao Wang, Yunfa Wang, Min Shi, Peng Huo, Jianxiang Wu, Qiaoxia Li, Qunjie Xu. Active non-bonding oxygen mediate lattice oxygen oxidation on NiFe2O4 achieving efficient and stable water oxidation [J]. Chinese Journal of Catalysis, 2025, 72(5): 164-175. |
| [7] | Pengxiang Zhang, Jiawen Wang, Tianyu Yang, Ruizhe Wang, Ruofan Shen, Zhikun Peng, Yanyan Liu, Xianli Wu, Jianchun Jiang, Baojun Li. Unveiling complexities: Reviews on insights into the mechanism of oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 72(5): 48-83. |
| [8] | Zhixing Guan, Ying Zhang, Fangfang Feng, Zhaohui Li, Yanli Liu, Zifeng Wu, Xingxing Zheng, Xionghui Fu, Yuanming Zhang, Wenbin Liao, Jialu Chen, Hongguang Liu, Yi Zhu, Yongge Wei. Boost proton transfer in water oxidation by constructing local electric fields on BiVO4 photoanodes [J]. Chinese Journal of Catalysis, 2025, 72(5): 176-186. |
| [9] | Liyuan Xiao, Xue Bai, Jingyi Han, Zhenlu Wang, Jingqi Guan. Tuning d-band electronic structure of Ni-Fe oxyhydroxides via doping engineering boosts seawater oxidation performance [J]. Chinese Journal of Catalysis, 2025, 71(4): 340-352. |
| [10] | Bo Zhang, Ru Xiao, Liyuan Liu, Xiaobin Liu, Ying Deng, Qingliang Lv, Zexing Wu, Yunmei Du, Yanyan Li, Zhenyu Xiao, Lei Wang. Electrochemistry assisted chlorine corrosion strategy: The minute-level fabrication of lattice Cl- functioned high spin-polarized Ni/Fe-LDH array for enhanced anti-Cl- OER performance [J]. Chinese Journal of Catalysis, 2025, 70(3): 388-398. |
| [11] | Yimeng Sun, Jun Chen, Lin Liu, Haibo Chi, Hongxian Han. The mechanism of OER activity and stability enhancement in acid by atomically doped iridium in γ-MnO2 [J]. Chinese Journal of Catalysis, 2025, 69(2): 99-110. |
| [12] | Mingxing Chen, Zihe Du, Nian Liu, Huijie Li, Jing Qi, Enbo Shangguan, Jing Li, Jiahao Cao, Shujiao Yang, Wei Zhang, Rui Cao. Cation and anion modulation activates lattice oxygen for enhanced oxygen evolution [J]. Chinese Journal of Catalysis, 2025, 69(2): 282-291. |
| [13] | Haotian Guo, Lulu Zhao, Xinyu Liu, Jing Li, Pengfei Wang, Zonglin Liu, Linlin Wang, Jie Shu, Tingfeng Yi. Electrospinning technology combined with MOFs: Bridging the development of high-performance zinc-air batteries [J]. Chinese Journal of Catalysis, 2025, 79(12): 32-67. |
| [14] | Yuhui Chen, Congbao Guo, Yi Wang, Kun Wang, Shuqin Song. Constructing high-entropy spinel oxide thin films via magnetron sputtering for efficiently electrocatalyzing alkaline oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 77(10): 210-219. |
| [15] | Jiahao Yang, Zhaoping Shi, Minhua Shao, Meiling Xiao, Changpeng Liu, Wei Xing. Integrated design of iridium-based catalysts for proton exchange membrane water electrolyzers [J]. Chinese Journal of Catalysis, 2025, 77(10): 20-44. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||