催化学报 ›› 2022, Vol. 43 ›› Issue (7): 1894-1905.DOI: 10.1016/S1872-2067(21)64026-3
苏凯艺a,b, 张超锋a,*(), 王业红a, 张健a, 郭强a, 高著衍a,b, 王峰a,#(
)
收稿日期:
2021-12-30
接受日期:
2022-01-17
出版日期:
2022-05-20
发布日期:
2022-05-20
通讯作者:
张超锋,王峰
基金资助:
Kaiyi Sua,b, Chaofeng Zhanga,*(), Yehong Wanga, Jian Zhanga, Qiang Guoa, Zhuyan Gaoa,b, Feng Wanga,#(
)
Received:
2021-12-30
Accepted:
2022-01-17
Online:
2022-05-20
Published:
2022-05-20
Contact:
Chaofeng Zhang, Feng Wang
Supported by:
摘要:
五氧化二铌(Nb2O5)具有独特酸碱性质和氧化能力, 在光催化尤其是光催化芳香化合物转化中引起了广泛的研究兴趣. 受限于自身的带隙宽度, 单纯Nb2O5只能吸收并利用太阳光中的紫外区能量. 近年来, 在Nb2O5上的可见光催化苄胺和苯甲醇选择氧化报道中, 底物活化和产物的高选择性归因于Nb2O5上Nb位点和底物的直接相互作用, 这系列工作为后续Nb2O5可见光催化过程提供研究基础, 被视为Nb2O5光催化作用研究中的里程碑工作. 此外, 研究发现Nb2O5的形貌改变会导致其活性有明显差异. 研究深入发现Nb2O5基催化剂中存在不同的NbOx单元, 虽然在不同形貌的Nb2O5催化剂上也存在这一结构, 但它们与活性之间的相关性尚不清楚. 为了解决这些问题, 亟需开发时空分辨的表征手段或者探针分子辅助的研究手段. 结合以往的研究报道, 含羟基或胺基官能团的有机分子与Nb位点存在相互作用. 由此推测, 可通过监测特定多官能团探针分子化合物与Nb2O5间存在的强相互作用以及电荷传递过程, 研究表面NbOx结构在光催化过程中的作用.
本文利用N-羟基邻苯二甲酰亚胺(NHPI)为探针分子, 区分不同NbOx结构单元在可见光照射下对C-H键的催化活化作用. 利用水热法及焙烧处理, 制备了含不同扭曲程度NbO6结构的Nb2O5催化剂, 结合紫外可见漫反射光谱、光电子能谱和电子顺磁共振波谱, 发现在可见光照下NHPI的电子明显转移到含高度扭曲NbO6结构的Nb2O5催化剂上. 在可见光(455 nm)照射下评价NHPI和不同Nb2O5催化剂在乙苯氧化反应中的性能, 发现含高度扭曲NbO6结构的催化剂上苯乙酮的生成速率明显高于含低度扭曲NbO6结构的催化剂(419‒495 vs. 82 μmol·g-1·h-1). 结合EPR为电子顺磁共振谱和捕获剂对比试验结果, 表明苯乙酮生成速率差异归因于NHPI失去电子后生成氮氧自由基物种有利于乙苯的C-H键活化, 从而提高乙苯的转化率及产物苯乙酮生产速率. 本文关联高度扭曲NbO6结构和光催化中电荷传递过程, 为研究光催化中NbOx的作用提供参考. 为开发其他探针分子, 实现Nb2O5上C-H键的高效活化, 以及用于开发有机物-Nb2O5的光催化体系提供借鉴.
苏凯艺, 张超锋, 王业红, 张健, 郭强, 高著衍, 王峰. 利用N-羟基邻苯二甲酰亚胺研究可见光照射下Nb2O5中高度扭曲的NbO6单元作为电子转移位点[J]. 催化学报, 2022, 43(7): 1894-1905.
Kaiyi Su, Chaofeng Zhang, Yehong Wang, Jian Zhang, Qiang Guo, Zhuyan Gao, Feng Wang. Unveiling the highly disordered NbO6 units as electron-transfer sites in Nb2O5 photocatalysis with N-hydroxyphthalimide under visible light irradiation[J]. Chinese Journal of Catalysis, 2022, 43(7): 1894-1905.
Fig. 2. XRD patterns (a), UV-Vis diffuse reflectance spectra (b), Tauc plots (c), and the electronic structures (d) of Nb2O5-450, Nb2O5-550, Nb2O5-650, and Nb2O5-850, respectively.
Fig. 4. The HRTEM images and corresponding intensity plots of the lattice of Nb2O5-450 (a,e), Nb2O5-550 (b,f), Nb2O5-650 (c,g), and Nb2O5-850 (d,h). The scale bar is 10 nm.
Fig. 5. Comparison in the results of UV-Vis DRS for NHPI molecules, as-synthesized Nb2O5-x catalysts before and after the addition of NHPI molecules (NHPI + Nb2O5-x). (a) Nb2O5-450; (b) Nb2O5-550; (c) Nb2O5-650; (d) Nb2O5-850.
Fig. 6. The results of EPR for the mixture of different Nb2O5 catalysts and NHPI in CH3CN solution (designated as NHPI + Nb2O5-x) under dark and light irradiation (450 nm). (a,b) NHPI+Nb2O5-450; (c,d) NHPI+Nb2O5-550; (e,f) NHPI+Nb2O5-650; (g,h) NHPI+Nb2O5-850.
Fig. 7. XPS results of high resolution of Nb 3d spectra for different Nb2O5-x catalysts before and after the addition of NHPI. (a) Nb2O5-450; (b) Nb2O5-550; (c) Nb2O5-650; (d) Nb2O5-850.
Fig. 8. The photocatalytic performance of different Nb2O5 catalysts in the oxidation of ethylbenzene. Reaction conditions: as-synthesized Nb2O5-x (10 mg), CH3CN solution containing ethylbenzene (0.1mmol), O2 (0.1 Mpa), blue LEDs (455 nm), 20?30 °C, reaction time 12 h. a 3 mg NHPI without any Nb2O5 catalyst. b addition of 3 mg NHPI. The conversion is the average result.
Fig. 9. The influence of different scavengers in the conversion of ethylbenzene over the mixture of NHPI and different Nb2O5-x catalysts. (a) Nb2O5-450; (b) Nb2O5-550; and (c) Nb2O5-650. Reaction conditions: Nb2O5-x catalyst (10 mg), 3 mg NHPI and 0.1 mmol of ethylbenzene dissolved in CH3CN (1 mL), O2 (0.1 Mpa), blue LEDs (455 nm), ca. 20?30 °C, reaction time 12 h. The amounts of (NH4)2C2O4, AgNO3, BQ, t-BuOH, and BHT were 0.1 mmol, 0.1 mmol, 0.1 mmol, 0.2?0.3 mmol, 0.1 mmol, respectively.
Fig. 10. Proposed charge-transfer process and the activation of ethylbenzene to acetophenone over the mixture of NHPI and Nb2O5-x catalysts (Nb2O5-450, Nb2O5-550, and Nb2O5-650) under visible light irradiation.
Fig. 11. The plausible relationship between average lattice spacing and conversion of ethylbenzene over Nb2O5-x catalysts. Reaction conditions are the same as those shown in Fig. 8 with the addition of NHPI.
[1] |
C. Zhang, Z. Huang, J. Lu, N. Luo, F. Wang, J. Am. Chem. Soc., 2018, 140, 2032-2035.
DOI URL |
[2] |
K. Y. Su, H. F. Liu, B. Zeng, Z. X. Zhang, N. C. Luo, Z. P. Huang, Z. Y. Gao, F. Wang, ACS Catal., 2020, 10, 1324-1333.
DOI URL |
[3] |
X. Y. Wu, Y. Zeng, H. C. Liu, J. Q. Zhao, T. R. Zhang, S. L. Wang, Nano Res., 2021, 14, 4584-4590.
DOI URL |
[4] |
I. B. Krylov, E. R. Lopat’eva, I. R. Subbotina, G. I. Nikishin, B. Yu, A. O. Terent’ev, Chin. J. Catal., 2021, 42, 1700-1711.
DOI URL |
[5] |
X. Jiao, K. Zheng, Q. Chen, X. Li, Y. Li, W. Shao, J. Xu, J. Zhu, Y. Pan, Y. Sun, Y. Xie, Angew. Chem. Int. Ed., 2020, 59, 15497-15501.
DOI URL |
[6] |
M. Melchionna, P. Fornasiero, ACS Catal., 2020, 10, 5493-5501.
DOI URL |
[7] |
X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev., 2016, 45, 2603-2636.
DOI URL |
[8] |
K. Y. Su, H. F. Liu, Z. Y. Gao, P. Fornasiero, F. Wang, Adv. Sci., 2021, 8, 2003156.
DOI URL |
[9] |
Y. Zou, Y. Hu, A. Uhrich, Z. Shen, B. Peng, Z. Ji, M. Muhler, G. Zhao, X. Wang, X. Xu, Appl. Catal. B, 2021, 298, 120584.
DOI URL |
[10] |
G. T. S. T. Da Silva, A. E. Nogueira, J. A. Oliveira, J. A. Torres, O. F. O. F., C. Ribeiro, Appl. Catal. B, 2019, 242, 349-357.
DOI URL |
[11] |
J. Yan, G. Wu, N. Guan, L. Li, Appl. Catal. B, 2014, 152-153, 280-288.
DOI URL |
[12] |
S. Furukawa, T. Shishido, K. Teramura, T. Tanaka, J. Phys. Chem. C, 2011, 115, 19320-19327.
DOI URL |
[13] |
K. Tamai, K. Murakami, S. Hosokawa, H. Asakura, K. Teramura, T. Tanaka, J. Phys. Chem. C, 2017, 121, 22854-22861.
DOI URL |
[14] |
C. Zhou, R. Shi, G. I. N. Waterhouse, T. Zhang, Coord. Chem. Rev., 2020, 419, 213399.
DOI URL |
[15] |
H. Zhang, Q. Wu, C. Guo, Y. Wu, T. Wu, ACS Sustainable Chem. Eng., 2017, 5, 3517-3523.
DOI URL |
[16] |
Y. Koito, G. J. Rees, J. V. Hanna, M. M. J. Li, Y.-K. Peng, T. Puchtler, R. Taylor, T. Wang, H. Kobayashi, I. F. Teixeira, M. A. Khan, H. T. Kreissl, S. C. E. Tsang, ChemCatChem, 2017, 9, 144-154.
DOI URL |
[17] |
S. Furukawa, Y. Ohno, T. Shishido, K. Teramura, T. Tanaka, ACS Catal., 2011, 1, 1150-1153.
DOI URL |
[18] |
S. Furukawa, Y. Ohno, T. Shishido, K. Teramura, T. Tanaka, J. Phys. Chem. C, 2012, 117, 442-450.
DOI URL |
[19] |
S. Furukawa, Y. Ohno, T. Shishido, K. Teramura, T. Tanaka, ChemPhysChem, 2011, 12, 2823-2830.
DOI PMID |
[20] |
S. Liang, L. Wen, S. Lin, J. Bi, P. Feng, X. Fu, L. Wu, Angew. Chem. Int. Ed., 2014, 53, 2951-2955.
DOI URL |
[21] |
J. Chen, H. Wang, Z. Zhang, L. Han, Y. Zhang, F. Gong, K. Xie, L. Xu, W. Song, S. Wu, J. Mater. Chem. A, 2019, 7, 5493-5503.
DOI URL |
[22] |
K. Nakajima, Y. Baba, R. Noma, M. Kitano, J. N. Kondo, S. Hayashi, M. Hara, J. Am. Chem. Soc., 2011, 133, 4224-4227.
DOI URL |
[23] |
H. T. Kreissl, M. M. J. Li, Y.-K. Peng, K. Nakagawa, T. J. N. Hooper, J. V. Hanna, A. Shepherd, T.-S. Wu, Y.-L. Soo, S. C. E. Tsang, J. Am. Chem. Soc., 2017, 139, 12670-12680.
DOI PMID |
[24] |
G. Zhang, G. Kim, W. Choi, Energy Environ. Sci., 2014, 7, 954-966.
DOI URL |
[25] |
H. Hao, J.-L. Shi, H. Xu, X. Li, X. Lang, Appl. Catal. B, 2019, 246, 149-155.
DOI URL |
[26] |
G. Yang, Y. Ma, J. Xu, J. Am. Chem. Soc., 2004, 126, 10542-10543.
DOI URL |
[27] |
G. Yang, L. Zheng, G. Wu, X. Lin, M. Song, Adv. Synth. Catal., 2007, 349, 2445-2448.
DOI URL |
[28] |
K. Y. Su, Y. H. Wang, C. F. Zhang, Z. Y. Gao, J. Y. Han, F. Wang, Appl. Catal. B, 2021, 298, 120554.
DOI URL |
[29] |
Y. Zhao, X. Zhou, L. Ye, S. C. Tsang, Nano Rev., 2012, 3, 17631.
DOI URL |
[30] |
J. An, Y. Wang, J. Lu, J. Zhang, Z. Zhang, S. Xu, X. Liu, T. Zhang, M. Gocyla, M. Heggen, R. E. Dunin-Borkowski, P. Fornasiero, F. Wang, J. Am. Chem. Soc., 2018, 140, 4172-4181.
DOI URL |
[31] |
H. Liu, H. Li, J. Lu, S. Zeng, M. Wang, N. Luo, S. Xu, F. Wang, ACS Catal., 2018, 8, 4761-4771.
DOI URL |
[32] |
Y. Liu, L. Chen, Q. Yuan, J. He, C. T. Au, S. F. Yin, Chem. Commun., 2016, 52, 1274-1277.
DOI URL |
[33] |
G. F. Leal, D. H. Barrett, H. Carrer, S. J. A. Figueroa, E. Teixeira-Neto, A. a. S. Curvelo, C. B. Rodella, J. Phys. Chem. C, 2019, 123, 3130-3143.
DOI URL |
[34] |
N. P. Ferraz, A. E. Nogueira, F. C. F. Marcos, V. A. Machado, R. R. Rocca, E. M. Assaf, Y. J. O. Asencios, Rare Met., 2020, 39, 230-240.
DOI URL |
[35] |
J. Chen, H. Wang, G. Huang, Z. Zhang, L. Han, W. Song, M. Li, Y. Zhang, J. Alloys Compd., 2017, 728, 19-28.
DOI URL |
[36] |
T. Ohuchi, T. Miyatake, Y. Hitomi, T. Tanaka, Catal. Today, 2007, 120, 233-239.
DOI URL |
[37] | C. Zhou, R. Shi, G. Yang, X. Meng, L. Z. Wu, C. H. Tung, T. Zhang, Mater. Today Chem., 2018, 10, 259-263. |
[38] |
O. F. Lopes, E. C. Paris, C. Ribeiro, Appl. Catal. B, 2014, 144, 800-808.
DOI URL |
[39] |
Y. Wang, X. Hu, H. Song, Y. Cai, Z. Li, D. Zu, P. Zhang, D. Chong, N. Gao, Y. Shen, C. Li, Appl. Catal. B, 2021, 299, 120677.
DOI URL |
[40] |
J. E. Nutting, M. Rafiee, S. S. Stahl, Chem. Rev., 2018, 118, 4834-4885.
DOI PMID |
[41] |
C. Yang, Z. Wang, T. Lin, H. Yin, X. Lü, D. Wan, T. Xu, C. Zheng, J. Lin, F. Huang, X. Xie, M. Jiang, J. Am. Chem. Soc., 2013, 135, 17831-17838.
DOI URL |
[42] |
J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Solar Energy Mater. Solar Cells, 2006, 90, 1773-1787.
DOI URL |
[43] |
M. MąCzka, M. Ptak, A. Majchrowski, J. Hanuza, J. Raman Spectrosc., 2011, 42, 209-213.
DOI URL |
[44] |
A. A. Mcconnell, J. S. Aderson, C. N. R. Rao, Spectrochim. Acta, Part A, 1976, 32, 1067-1076.
DOI URL |
[45] |
J. M. Jehng, I. E. Wachs, Chem. Mater., 1991, 3, 100-107.
DOI URL |
[46] |
B. N. Nunes, D. W. Bahnemann, A. O. T. Patrocinio, ACS Appl. Energy Mater., 2021, 4, 3681-3692.
DOI URL |
[47] |
T. Murayama, J. Chen, J. Hirata, K. Matsumoto, W. Ueda, Catal. Sci. Technol., 2014, 4, 4250-4257.
DOI URL |
[48] |
T. Shishido, K. Teramura, T. Tanaka, Catal. Sci. Technol., 2011, 1, 541-551.
DOI URL |
[49] |
Y. Zhang, L. Pei, Z. Zheng, Y. Yuan, T. Xie, J. Yang, S. Chen, J. Wang, E. R. Waclawik, H. Zhu, J. Mater. Chem. A, 2015, 3, 18045-18052.
DOI URL |
[50] |
G. Zhao, B. Hu, G. W. Busser, B. Peng, M. Muhler, ChemSusChem, 2019, 12, 2795-2801.
DOI URL |
[51] |
Z. Jin, L. Wang, E. Zuidema, K. Mondal, M. Zhang, J. Zhang, C. Wang, X. Meng, H. Yang, C. Mesters, F.-S. Xiao, Science, 2020, 367, 193-197.
DOI URL |
[52] |
W. Huang, A. C. Johnston-Peck, T. Wolter, W.-C. D. Yang, L. Xu, J. Oh, B. A. Reeves, C. Zhou, M. E. Holtz, A. A. Herzing, A. M. Lindenberg, M. Mavrikakis, M. Cargnello, Science, 2021, 373, 1518-1523.
DOI URL |
[53] |
H. Wang, Q. Luo, L. Wang, Y. Hui, Y. Qin, L. Song, F.-S. Xiao, Chin. J. Catal., 2021, 42, 2164-2172.
DOI URL |
[54] |
R. Ma, W. Chen, L. Wang, X. Yi, Y. Xiao, X. Gao, J. Zhang, X. Tang, C. Yang, X. Meng, A. Zheng, F.-S. Xiao, ACS Catal., 2019, 9, 10448-10453.
DOI URL |
[55] |
Y. Zhao, C. Eley, J. Hu, J. S. Foord, L. Ye, H. He, S. C. Tsang, Angew. Chem. Int. Ed., 2012, 51, 3846-3849.
DOI PMID |
[56] |
G. Zhao, S. A. Bonke, S. Schmidt, Z. Wang, B. Hu, T. Falk, Y. Hu, T. Rath, W. Xia, B. Peng, A. Schnegg, Y. Weng, M. Muhler, ACS Sustainable Chem. Eng., 2021, 9, 5422-5429.
DOI URL |
[57] |
N. Wang, L. Zhu, K. Deng, Y. She, Y. Yu, H. Tang, Appl. Catal. B, 2010, 95, 400-407.
DOI URL |
[58] |
S. Furukawa, T. Shishido, K. Teramura, T. Tanaka, ChemPhysChem, 2014, 15, 2665-2667.
DOI PMID |
[59] |
H. Reichelt, C. A. Faunce, H. H. Paradies, J. Phys. Chem. A, 2007, 111, 2587-2601.
PMID |
[60] |
V. Krishnakumar, S. Manohar, R. Nagalakshmi, Spectrochim. Acta, Part A, 2008, 71, 110-115.
DOI PMID |
[61] |
V. Krishnakumar, M. Sivasubramanian, S. Muthunatesan, J. Raman Spectrosc., 2009, 40, 987-991.
DOI URL |
[62] |
H. Nishiyama, H. Kobayashi, Y. Inoue, ChemSusChem, 2011, 4, 208-215.
DOI PMID |
[63] |
Y. Chai, Y. Chen, J. Shen, M. Ni, B. Wang, D. Li, Z. Zhang, X. Wang, ACS Catal., 2021, 11, 11029-11039.
DOI URL |
[1] | 汤文杰, 陈娟荣, 尹正亮, 盛维琛, 林逢建, 许辉, 曹顺生. 铋改性TiO2单晶光催化剂的制备及其完全去除酚类污染物[J]. 催化学报, 2021, 42(2): 347-355. |
[2] | 岑丙横, 汤岑, 鲁继青, 陈建, 罗孟飞. MoO3和Nb2O5助剂对Pt/ZrO2催化剂上短链烷烃燃烧反应的不同促进作用[J]. 催化学报, 2021, 42(12): 2287-2295. |
[3] | 李政, 顾贵洲, 胡绍争, 邹熊, 武光. 硫掺杂石墨相氮化碳的光催化固氮性能中氮空穴对氮气分子活化的提升作用[J]. 催化学报, 2019, 40(8): 1178-1186. |
[4] | 肖颖冠, 孙孝东, 李霖昱, 陈娟荣, 赵仕东, 蒋采国, 杨露瑶, 程黎, 曹顺生. 碳-氮共改性中空二氧化钛光催化剂的同步合成及其高效的光催化行为和循环稳定性研究[J]. 催化学报, 2019, 40(5): 765-775. |
[5] | 李玉洁, 杨帆, 余颖. LSDA+U方法研究Ni掺杂CuO和Cu掺杂NiO的电子结构和反铁磁学性质[J]. 催化学报, 2017, 38(5): 767-774. |
[6] | 魏凯, 李可心, 曾振兴, 戴玉华, 颜流水, 郭会琴, 罗旭彪. 在Cr(VI)和4-氯酚复合污染系统中多孔石墨相氮化碳的协同光催化效应[J]. 催化学报, 2017, 38(11): 1804-1811. |
[7] | 曾振兴, 李可心, 魏凯, 戴玉华, 颜流水, 郭会琴, 罗旭彪. 原位光还原法制备高分散铂沉积多孔氮化碳复合材料及其降解水中4-氟苯酚的高效可见光光催化活性[J]. 催化学报, 2017, 38(1): 29-38. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||