催化学报 ›› 2022, Vol. 43 ›› Issue (8): 1991-2000.DOI: 10.1016/S1872-2067(21)64036-6

• 桥连热、光、电催化的表界面化学专栏 • 上一篇    下一篇

调控炔烃半氢化反应的催化选择性: 实验和理论的最新进展

李晓天, 陈林, 商城, 刘智攀()   

  1. 复旦大学化学系, 上海市分子催化和功能材料重点实验室, 物质计算科学教育部重点实验室, 上海200433
  • 收稿日期:2021-11-30 接受日期:2022-01-24 出版日期:2022-08-18 发布日期:2022-06-20
  • 通讯作者: 刘智攀
  • 基金资助:
    国家重点研发计划(2018YFA0208600);国家自然科学基金(22033003);国家自然科学基金(21533001);国家自然科学基金(91745201)

Selectivity control in alkyne semihydrogenation: Recent experimental and theoretical progress

Xiao-Tian Li, Lin Chen, Cheng Shang, Zhi-Pan Liu()   

  1. Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
  • Received:2021-11-30 Accepted:2022-01-24 Online:2022-08-18 Published:2022-06-20
  • Contact: Zhi-Pan Liu
  • Supported by:
    National Key Research and Development Program of China(2018YFA0208600);National Natural Science Foundation of China(22033003);National Natural Science Foundation of China(21533001);National Natural Science Foundation of China(91745201)

摘要:

由于短链烯烃的广泛应用, 炔烃选择性加氢制备烯烃是一个非常重要的石油化学催化过程. 其中最简单的乙炔半氢化, 吸引了众多研究者的广泛研究, 是催化选择性调控的一个非常重要反应. 工业上, 由石油蒸汽裂解得到的乙烯往往混有微量(∼1%)的乙炔, 它会毒化乙烯聚合反应时所使用的Ziegler-Natta催化剂, 因此需要降低乙炔含量至5 × 10-6以下. 这要求加氢催化剂具有很高的乙炔转化率(> 99%)和乙烯选择性(> 80%). Pd基催化剂因低温下的具有高活性, 是最常用的炔烃半氢化催化剂, 其中Pd-Ag合金催化剂已在工业界应用了数十年. 近十几年来, 新型的乙炔半氢化催化剂不断被提出, 其催化选择性的研究也取得了很大的进展.

本文对炔烃半氢化反应的最新研究进展进行了总结. 以乙炔加氢为例, 介绍了其工业反应的条件、反应的网络以及潜在的副反应. 归纳了提高加氢选择性的常见方法, 并总结了近十几年报道的性能较好的乙炔半氢化催化剂. 重点阐述了近年研究对加氢选择性的深入理解: Pd基催化剂的表面结构会随着反应条件和反应过程动态变化, 从而影响加氢选择性. 利用程序升温脱附和X射线光电子能谱研究催化剂的表面性质和相应的催化性能, 确认了次表层H和表层C的出现, 并发现了它们对催化选择性的重要影响. 理论模拟(DFT, SSW-NN)建立了催化活性中心的原子结构, 发现了Ag在PdAg合金表面的富集, 以及在反应条件下Pd原子偏析到(111)面, 阐明了晶面结构与催化选择性之间的定量关联. 综上, 实验和理论的结合不仅深化了研究者对加氢选择性的理解, 也为设计更好的催化剂提供了有效的指导.

关键词: 炔烃半氢化, 催化选择性, 表面科学, 机器学习, 神经网络势

Abstract:

Researchers have been attempting to characterize heterogeneous catalysts in situ in addition to correlating their structures with their activity and selectivity in spite of many challenges. Here, we review recent experimental and theoretical advances regarding alkyne selective hydrogenation by Pd-based catalysts, which are an important petrochemical reaction. The catalytic selectivity for the reaction of alkynes to alkenes is influenced by the composition and structure of the catalysts. Recent progress achieved through experimental studies and atomic simulations has provided useful insights into the origins of the selectivity. The important role of the subsurface species (H and C) was revealed by monitoring the catalyst surface and the related catalytic performance. The atomic structures of the Pd catalytic centers and their relationship with selectivity were established through atomic simulations. The combined knowledge gained from experimental and theoretical studies provides a fundamental understanding of catalytic mechanisms and reveals a path toward improved catalyst design.

Key words: Alkyne semihydrogenation, Catalytic selectivity, Surface science, Machine learning, Neural network potential