催化学报 ›› 2022, Vol. 43 ›› Issue (7): 1927-1936.DOI: 10.1016/S1872-2067(21)64050-0

• 论文 • 上一篇    下一篇

用于过氧单硫酸盐活化的超耐用氟化V2AlC

李超a,, 宋晨杰a,b,, 李慧c, 叶立群a,b,*(), 徐怡雪a,b, 黄应平d, 聂工哲a, 张如梦a, 刘维a,b, 黄妞a,b, 王保强e, 马天翼c,#()   

  1. a三峡大学材料与化学工程学院, 无机非金属晶体与能量转换材料重点实验室, 湖北宜昌443002, 中国
    b湖北三峡实验室, 湖北宜昌443007, 中国
    c皇家墨尔本理工大学, 墨尔本, 澳大利亚
    d三峡大学教育部三峡库区生态环境工程研究中心, 湖北宜昌443002, 中国
    e香港中文大学生命科学学院, 香港沙田, 中国
  • 收稿日期:2022-03-20 接受日期:2022-03-29 出版日期:2022-07-18 发布日期:2022-05-20
  • 通讯作者: 叶立群,马天翼
  • 作者简介:第一联系人:

    共同第一作者.

  • 基金资助:
    国家自然科学基金(51872147);国家自然科学基金(22136003);111项目(D20015)

Ultradurable fluorinated V2AlC for peroxymonosulfate activation in organic pollutant degradation processes

Chao Lia,, Chenjie Songa,b,, Hui Lic, Liqun Yea,b,*(), Yixue Xua,b, Yingping Huangd, Gongzhe Niea, Rumeng Zhanga, Wei Liua,b, Niu Huanga,b, Po Keung Wonge, Tianyi Mac,#()   

  1. aKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, Hubei, China
    bHubei Three Gorges Laboratory,Yichang 443007, Hubei, China
    cSchool of Science, RMIT University, Melbourne, VIC 3000, Australia
    dEngineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
    eSchool of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
  • Received:2022-03-20 Accepted:2022-03-29 Online:2022-07-18 Published:2022-05-20
  • Contact: Liqun Ye, Tianyi Ma
  • About author:First author contact:

    Contributed equally to this work.

  • Supported by:
    National Natural Science Foundation of China(51872147);National Natural Science Foundation of China(22136003);111 Project(D20015)

摘要:

四环素是兽药中应用最广泛的抗生素之一, 残留的四环素会对环境和人类造成潜在危害. 目前主要采用物理和化学工艺去除四环素. 物理工艺包括吸附和膜分离技术, 不会破坏四环素的结构. 化学过程是通过活性氧破坏四环素的结构, 如芬顿反应和光催化技术. 然而, 上述过程均存在一些不足. 最近, 基于过氧一硫酸盐(PMS)的高级氧化技术在水处理方面表现优异, 引起了人们的广泛关注. PMS具有稳定、环保、易于运输和无毒等优点, 与羟基自由基相比, PMS活化产生的硫酸根自由基具有更高的氧化还原电位和更长的半衰期. PMS可以通过多种方式活化, 如过渡金属活化、碳材料活化、紫外线照射、热、超声波和微波活化过程. 其中, 过渡金属的活化因活化能力较强而备受关注. 钒基催化剂被认为最有希望替代钴基催化剂, 用于活化PMS以降解有机污染物的材料. 然而, 即使钒的含量远低于钴, 传统的钒物种也很容易泄漏出影响环境的金属离子.

本文采用氟化后的钒铝碳(F-V2AlC)活化PMS, 表现出较好的罗丹明和抗生素降解能力. F-V2AlC/PMS系统在15 min内对罗丹明和抗生素的去除率分别达到97.7%和78.0%. 并且, F-V2AlC在PMS活化方面表现出比V2O3更高的活性和更好的可重复使用性. 与V2O3的活性快速丧失和高浓度离子泄漏相比, F-V2AlC表现出几乎恒定的活性和极低的离子泄漏. 催化剂的活化能力在六次循环后几乎没有减弱. 活性氧清除实验和电子自旋共振研究表明, 主要的活性氧为单线态氧, 这是由于二维限制效应导致的. 抗生素降解过程中吸光度的测试结果表明, F-V2AlC/PMS体系中275 nm处的吸收峰出现不同的蓝移, 因此采用液相色谱-质谱(LC-MS)检测降解中间产物, 并推测可能的降解路径. 催化剂对四环素降解的实验结果表明, 氟的引入改变了抗生素在催化剂上的吸附方式, 进而改变了降解路径. 分解产物的环境影响实验结果表明, 降解中间体的毒性大大降低. 综上, 这种超耐用的催化剂材料为PMS高级氧化技术的实际应用提供了基础.

关键词: 氟化, 高级氧化技术, 钒铝碳, 活性氧

Abstract:

Vanadium-based catalysts are considered the most promising materials to replace cobalt-based catalysts for the activation of peroxymonosulfate (PMS) to degrade organic pollutants. However, these traditional vanadium species easily leak out metal ions that can affect the environment, even though the of vanadium is much less than that of cobalt. Compared to other vanadium-based catalysts, e.g., V2O3, fluorinated V2AlC shows a high and constant activity and reusability regarding PMS activation. Furthermore, it features extremely low ion leakage. Active oxygen species scavenging and electron spin resonance measurements reveal that the main reactive oxygen species was 1O2, which was induced by a two-dimensional confinement effect. More importantly, for the real-life application of tetracycline (TC) degradation, the introduction of fluorine changed the adsorption mode of TC over the catalyst, thereby changing the degradation path. The intermediate products were detected by liquid-chromatography mass spectroscopy (LC-MS), and a possible degradation path was proposed. The environmental impact test of the decomposition products showed that the toxicity of the degradation intermediates was greatly reduced. Therefore, the investigated ultradurable catalyst material provides a basis for the practical application of advanced PMS oxidation technology.

Key words: Fluorination, Advance oxidation technology, V2AlC, Reactive oxygen species