催化学报 ›› 2018, Vol. 39 ›› Issue (10): 1695-1703.DOI: 10.1016/S1872-2067(18)63097-9

• 论文 • 上一篇    下一篇

活性氧自由基生成及传输对g-C3N4上NO光催化去除的影响:原位红外光谱与计算模拟结合法

李解元a, 颜萍b, 李康璐a, 岑望来b, 于晓巍d, 袁山东b, 楚英豪a, 王正明c   

  1. a 四川大学建筑与环境学院, 四川成都 610065, 中国;
    b 四川大学新能源与低碳技术研究院, 四川成都 610065, 中国;
    c 日本产业技术综合研究所, 筑波茨城305-8569, 日本;
    d 环保部华南环境科学研究所, 广东广州 510655, 中国
  • 收稿日期:2018-04-21 修回日期:2018-05-07 出版日期:2018-10-18 发布日期:2018-08-03
  • 通讯作者: 于晓巍, 袁山东, 楚英豪
  • 基金资助:

    国家自然科学基金(51508356);四川省科技支撑计划(2014GZ0213,2016GZ0045);四川省科技创新苗子工程(17-YCG053).

Generation and transformation of ROS on g-C3N4 for efficient photocatalytic NO removal: A combined in situ DRIFTS and DFT investigation

Jieyuan Lia, Ping Yanb, Kanglu Lia, Wanglai Cenb, Xiaowei Yud, Shandong Yuanb, Yinghao Chua, Zhengming Wangc   

  1. a College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China;
    b Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, Sichuan, China;
    c Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan;
    d South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655, Guangdong, China
  • Received:2018-04-21 Revised:2018-05-07 Online:2018-10-18 Published:2018-08-03
  • Contact: 10.1016/S1872-2067(18)63097-9
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51508356), Science and Technology Support Program of Sichuan Province (2014GZ0213,2016GZ0045), and Youth Project in Science and Technology Innovation Program of Sichuan Province (17-YCG053).

摘要:

石墨相氮化碳(g-C3N4)具有独特的二维层状结构和合适的能带结构,因而在可见光催化领域广受关注.尤其是在可见光去除环境污染物领域,得到了较为充分的研究与应用.然而g-C3N4去除环境污机理的反应机理尚不明确.因此,本文采用理论计算与实验高度结合的研究方法,以光催化NO去除为例,深入阐述了光照下g-C3N4表面活性氧物种(ROS)的生成及转化过程,及其介导下的NO光催化氧化机理.
X射线衍射结果表明,g-C3N4是三嗪环层内聚合后层层堆叠而成,并由红外光谱确定了其表面的官能团类型.该结构经扫描电镜和透射电镜得到了进一步的验证.采用光致激发谱和紫外可见漫反射光谱等实验表征与密度泛函理论计算结合的光电性质分析,我们发现,g-C3N4在可见光下具有一定的响应,这为其在光催化去除NO中奠定了基础.同时,其价带位置过高,无法自行产生氧化性较强的羟基自由基(·OH).
电子自旋共振技术结果表明g-C3N4在光照下能捕获到·O2-和·OH两种活性自由基.采用反应路径计算发现,·OH是由·O2-在导带上逐步得到电子被还原而生成,其中的速率控制步骤是H2O2的解离.因此,促进O2分子的吸附和活化和克服H2O2解离的反应活化能是产生·OH和提升g-C3N4光催化氧化活性的关键.
采用原位红外光谱技术对g-C3N4上NO的氧化去除过程进行了表征,发现其主要中间产物为NO2,主要终产物为NO2-和NO3-.采用反应路径计算对该反应过程进行了理论模拟,发现在·O2-介导下,最高反应活化能为0.66eV,而在·OH介导下,该活化能降低至0.46eV,表明·OH的氧化性要明显强于·O2-.总之,本文采用一种可行的、高度结合的实验与计算手段研究了g-C3N4上ROS的生成及转化过程及其对NO去除的反应历程,在原子尺度揭示了该反应的机理,加深了对ROS在光催化环境污染物降解过程中作用的理解.

关键词: 光催化, 活性氧物种, 石墨相氮化碳, NO去除, 反应机理

Abstract:

Understanding the performance of reactive oxygen species (ROS) in photocatalysis is pivotal for advancing their application in environmental remediation. However, techniques for investigating the generation and transformation mechanism of ROS have been largely overlooked. In this study, considering g-C3N4 to be a model photocatalyst, we have focused on the ROS generation and transformation for efficient photocatalytic NO removal. It was found that the key to improving the photocatalysis performance was to enhance the ROS transformation from ·O2- to ·OH, elevating the production of ·OH. The ROS directly participate in the photocatalytic NO removal and tailor the rate-determining step, which is required to overcome the high activation energy of the intermediate conversion. Using a closely combined experimental and theoretical method, this work provides a new protocol to investigate the ROS behavior on g-C3N4 for effective NO removal and clarifies the reaction mechanism at the atomic level, which enriches the understanding of ROS in photocatalytic environmental remediation.

Key words: Photocatalysis, Reactive oxygen species, g-C3N4, NO removal, Reaction mechanism