催化学报 ›› 2024, Vol. 58: 168-179.DOI: 10.1016/S1872-2067(23)64606-6
Nikolay Nesterov*(), Alexey Philippov*(
), Vera Pakharukova, Evgeny Gerasimov, Stanislav Yakushkin, Oleg Martyanov
收稿日期:
2023-11-28
接受日期:
2024-01-19
出版日期:
2024-03-18
发布日期:
2024-03-28
通讯作者:
*电子信箱: nesterov@catalysis.ru (N. Nesterov),philippov@catalysis.ru (A. Philippov).
基金资助:
Nikolay Nesterov*(), Alexey Philippov*(
), Vera Pakharukova, Evgeny Gerasimov, Stanislav Yakushkin, Oleg Martyanov
Received:
2023-11-28
Accepted:
2024-01-19
Online:
2024-03-18
Published:
2024-03-28
Contact:
*nesterov@catalysis.ru (N. Nesterov),philippov@catalysis.ru (A. Philippov).
摘要:
本文研究了在转移加氢条件下, 不同类型醇作为氢供体对镍基催化剂在苯并呋喃加氢反应中的活性影响. 结果表明, 使用异丙醇作为氢供体时, 苯并呋喃的加氢过程为底物先发生脱芳构化, 然后再进行脱氧反应. 然而, 当使用伯醇如甲醇、乙醇和正丙醇作为氢供体时, 会导致镍基催化剂的不可逆失活. 针对这一现象, 进一步研究了伯醇使镍基金属催化剂失活的机理. 结果表明, 在250 °C条件下, 催化剂与伯醇的相互作用会导致形成非活性的碳化物Ni3C, 并且镍金属颗粒在氧化铝载体表面会发生烧结和偏析.
Nikolay Nesterov, Alexey Philippov, Vera Pakharukova, Evgeny Gerasimov, Stanislav Yakushkin, Oleg Martyanov. 伯醇对镍基催化剂在转移氢化反应中的抑制作用研究[J]. 催化学报, 2024, 58: 168-179.
Nikolay Nesterov, Alexey Philippov, Vera Pakharukova, Evgeny Gerasimov, Stanislav Yakushkin, Oleg Martyanov. Primary alcohols as killers of Ni-based catalysts in transfer hydrogenation[J]. Chinese Journal of Catalysis, 2024, 58: 168-179.
Sample | Alcohol | Temperature, °C | Pressure, bar |
---|---|---|---|
Ni_Alum_2-Pr_250 | 2-PrOH | 250 | 78‒81 |
Ni_Alum_2-Pr_300 | 300 | 117‒128 | |
Ni_Alum_2-Pr_150 | 150 | 9‒11 | |
Ni_Alum_2-Pr_82 | 82 | 1 | |
— | 250 | 54‒55 | |
Ni_Alum_1-Pr_250 | 1-PrOH | 250 | 42‒46 |
Ni_Alum_Et_250 | EtOH | 250 | 80‒82 |
Ni_Alum_Et_200 | 200 | 31‒33 | |
Ni_Alum_Et_150 | 150 | 11‒12 | |
Ni_Alum_Me_250 | MeOH | 250 | 94‒97 |
Ni_Alum_2-Pr-Et_250 | 2-PrOH + EtOH | 250 | 72‒80 |
Table 1 Reaction conditions for the transfer hydrogenation of benzofuran.
Sample | Alcohol | Temperature, °C | Pressure, bar |
---|---|---|---|
Ni_Alum_2-Pr_250 | 2-PrOH | 250 | 78‒81 |
Ni_Alum_2-Pr_300 | 300 | 117‒128 | |
Ni_Alum_2-Pr_150 | 150 | 9‒11 | |
Ni_Alum_2-Pr_82 | 82 | 1 | |
— | 250 | 54‒55 | |
Ni_Alum_1-Pr_250 | 1-PrOH | 250 | 42‒46 |
Ni_Alum_Et_250 | EtOH | 250 | 80‒82 |
Ni_Alum_Et_200 | 200 | 31‒33 | |
Ni_Alum_Et_150 | 150 | 11‒12 | |
Ni_Alum_Me_250 | MeOH | 250 | 94‒97 |
Ni_Alum_2-Pr-Et_250 | 2-PrOH + EtOH | 250 | 72‒80 |
Fig. 3. Scheme of the transformations of benzofuran and intermediates over Ni_Alum catalyst (ki are the quasi-first order rate constants). BFN: 2,3-benzofuran; DBFN: 2,3-dihydrobenzofuran; OBFN: octahydrobenzofuran; 2-EPEL: 2-ethylphenol; 2-MPEL: 2-methylphenol; 2-ECHL: 2-ethylcyclohexanol; 2-ECHON: 2-ethylcyclohexanone; 2-MCHL: 2-methylcyclohexanol; 2-MCHON: 2-methylcyclohexanone; ECHN: ethylcyclohexane; MCHN: methylcyclohexane.
Fig. 4. Percentage composition of the reaction mixtures as functions of time. (a) m(Ni_Alum) = 0.42 g, 82 °C, 2-PrOH; (b) m(Ni_Alum) = 0.42 g, 150 °C, 2-PrOH; (c) m(Ni_Alum) = 0.12 g, 250 °C, 2-PrOH; (d) m(Ni_Alum) = 0.12 g, 275 °C, 2-PrOH; (e) m(Ni_Alum) = 0.12 g, 250 °C, 2-PrOH + EtOH. The points are experimental data and the lines are data calculated from the quasi-first order kinetic model.
Fig. 5. Experimental XRD patterns for Ni_Alum catalyst after transfer hydrogenation in 2-PrOH at different temperatures. (a) 82 °C; (b) 150 °C; (c) 250 °C; (d) 300 °C.
Sample | Phase | Lattice parameter, Å | DXRD, nm |
---|---|---|---|
Ni_Alum_fresh | Ni0 | a = 3.526(1) | 5.0(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_82 | Ni0 | a = 3.527(1) | 5.5(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_150 | Ni0 | a = 3.525(1) | 5.5(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_250 | Ni0 | a = 3.527(1) | 6.0(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_300 | Ni0 | a = 3.526(1) | 5.5(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) |
Table 2 XRD data of phase composition and structural features of crystalline phases in the catalyst before and after transfer hydrogenation in 2-PrOH at different temperatures. 2-Pr is 2-propanol, the number is the process temperature.
Sample | Phase | Lattice parameter, Å | DXRD, nm |
---|---|---|---|
Ni_Alum_fresh | Ni0 | a = 3.526(1) | 5.0(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_82 | Ni0 | a = 3.527(1) | 5.5(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_150 | Ni0 | a = 3.525(1) | 5.5(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_250 | Ni0 | a = 3.527(1) | 6.0(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_300 | Ni0 | a = 3.526(1) | 5.5(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) |
Fig. 6. Experimental XRD patterns for Ni_Alum catalyst after transfer hydrogenation at 250 °С in different media. (a) MeOH; (b) EtOH; (c) 1-PrOH; (d) mixture 2-PrOH-EtOH.
Sample | Phase | Lattice parameter, Å | DXRD, nm |
---|---|---|---|
Ni_Alum_Me_250 | Ni0 | a = 3.526(1) | 19.0(5) |
Ni3C | a = b = 4.582(1), c = 12.99(1) | 18.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_Et_250 | Ni0 | a = 3.527(2) | 12.0(5) |
Ni1-xCx | a = 3.628(3) | 4.0(5) | |
Ni3C | a = b = 4.582(2), c = 12.99(2) | 29.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_1-Pr_250 | Ni0 | a = 3.524(2) | 16.5(5) |
Ni1-xCx | a = 3.626(3) | 5.0(5) | |
Ni3C | - | - | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr-Et_250 | Ni0 | a = 3.528(3) | 7.0(5) |
Ni1-xCx | a = 3.610(3) | 3.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) |
Table 3 XRD data of phase composition and structural features of crystalline phases in the catalyst after transfer hydrogenation in different primary alcohols and 2-PrOH-EtOH mixture.
Sample | Phase | Lattice parameter, Å | DXRD, nm |
---|---|---|---|
Ni_Alum_Me_250 | Ni0 | a = 3.526(1) | 19.0(5) |
Ni3C | a = b = 4.582(1), c = 12.99(1) | 18.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_Et_250 | Ni0 | a = 3.527(2) | 12.0(5) |
Ni1-xCx | a = 3.628(3) | 4.0(5) | |
Ni3C | a = b = 4.582(2), c = 12.99(2) | 29.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_1-Pr_250 | Ni0 | a = 3.524(2) | 16.5(5) |
Ni1-xCx | a = 3.626(3) | 5.0(5) | |
Ni3C | - | - | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr-Et_250 | Ni0 | a = 3.528(3) | 7.0(5) |
Ni1-xCx | a = 3.610(3) | 3.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) |
Fig. 7. HRTEM images of Ni_Alum_Me_250 catalyst. (a) sample morphology; (b) crystal structure of Ni3C and Ni0 crystallites; (c) HAADF-STEM image of catalyst; (d) corresponding EDX mapping.
Fig. 8. HRTEM images of Ni_Alum_1-Pr_250 catalyst: (a) sample morphology; (b) crystal structure of Ni3C and Ni1?xCx crystallites; (c) EDX mapping image of the catalyst; (d) particles of different carbides on the Al2O3 surface.
Fig. 10. Experimental XRD patterns for Ni_Alum catalyst after transfer hydrogenation in EtOH at different temperatures. (a) 150 °C; (b) 200 °C; (c) 250 °C.
Sample | Phase | Lattice parameter, Å | DXRD, nm |
---|---|---|---|
Ni_Alum_Et_150 | Ni0 | a = 3.526(1) | 6.0(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_Et_200 | Ni0 | a = 3.527(3) | 7.5(5) |
Ni1-xCx | a = 3.622(3) | 5.0(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_Et_250 | Ni0 | a = 3.527(2) | 12.0(5) |
Ni1-xCx | a = 3.628(3) | 4.0(5) | |
Ni3C | a = b = 4.582(3), c = 12.99(3) | 29.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) |
Table 4 XRD data of phase composition and structural features of crystalline phases in the catalyst after transfer hydrogenation in EtOH at different temperatures.
Sample | Phase | Lattice parameter, Å | DXRD, nm |
---|---|---|---|
Ni_Alum_Et_150 | Ni0 | a = 3.526(1) | 6.0(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_Et_200 | Ni0 | a = 3.527(3) | 7.5(5) |
Ni1-xCx | a = 3.622(3) | 5.0(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_Et_250 | Ni0 | a = 3.527(2) | 12.0(5) |
Ni1-xCx | a = 3.628(3) | 4.0(5) | |
Ni3C | a = b = 4.582(3), c = 12.99(3) | 29.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) |
Fig. 11. In situ FMR study of the Ni_Alum catalyst evolution in the presence of EtOH. (a) At 250 °C (the pressure during the experiment was in the range of 85?90 atmospheres): (i) 0 min, (ii) 20 min, (iii) 35 min, (iv) 60 min, (v) 90 min, (vi) 110 min and the result of the spectra simulation using the Lorentzian line shape. (b) The integral intensity of the spectrum components as a function on time. (c) The width of the spectra components as a function on time.
|
[1] | 蒋兴星, 赵雨昕, 孔艳, 孙建桔, 冯上照, 胡琪, 杨恒攀, 何传新. 充分稳定和暴露的铜基异质结实现CO2高效电还原制乙醇[J]. 催化学报, 2024, 58(3): 216-225. |
[2] | 别泉泉, 尹海波, 王云龙, 苏海伟, 彭悦, 李俊华. Cu单原子与氧空位协同作用增强电催化CO2还原中C2液相产物活性[J]. 催化学报, 2024, 57(2): 96-104. |
[3] | 周湘淇, 李丽丽, 王俊刚, 李展波, 邵希吉, 程付鹏, 张林娟, 王建强, Akhil Jain, 林涛, 静超. 单纳米粒子表面的甲醇电催化氧化过程[J]. 催化学报, 2024, 57(2): 59-67. |
[4] | 周百川, 李文翠, 王嘉, 孙丹卉, 向诗煜, 高新芊, 陆安慧. Co-YPO4双功能催化剂促进乙醇高值转化制丁二烯[J]. 催化学报, 2024, 56(1): 166-175. |
[5] | 马长坡, 赖楹, 赵天歌, 张小炫, 刘海超, 杨维冉. 环醚直接双羰基化合成α,ω-二元羧酸[J]. 催化学报, 2024, 56(1): 122-129. |
[6] | 齐宴宾, 朱以华, 江宏亮, 李春忠. 通过NiMo氧化物-CoMo氧化物混合物衍生催化剂中的界面相互作用促进甲醇到甲酸盐的电催化氧化[J]. 催化学报, 2024, 56(1): 139-149. |
[7] | 范凯, 吴勤明, 刘烁, 孔海宇, 王森, 孟祥举, 张维萍, 肖丰收. 调控铝在ITH沸石骨架中的位置以用于催化甲醇制烯烃[J]. 催化学报, 2024, 56(1): 114-121. |
[8] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[9] | 孙丽娟, 于晓慧, 唐丽永, 王伟康, 刘芹芹. 构建K3PW12O40/CdS核壳S型异质结实现同步太阳能光催化分解水和选择性苯甲醇氧化反应[J]. 催化学报, 2023, 52(9): 164-175. |
[10] | 周双龙, 赵亮, 吕征, 代钰, 张琦, 赖建平, 王磊. 局部氧自由基的性质促进电催化乙醇选择性生成CO2[J]. 催化学报, 2023, 52(9): 154-163. |
[11] | 张雯, 宋彩彩, 王嘉蔚, 蔡舒婷, 高梦语, 冯有祥, 鲁统部. 双向主客体作用促进水溶液中选择性光催化CO2还原与醇氧化[J]. 催化学报, 2023, 52(9): 176-186. |
[12] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. C4二醇的发酵生产及其化学催化升级为高价值化学品的研究进展[J]. 催化学报, 2023, 52(9): 99-126. |
[13] | 乔蔚, 于立策, 常进法, 杨甫林, 冯立纲. MoSe2纳米片耦合Pt纳米颗粒用于高效双功能催化甲醇辅助水电解制氢[J]. 催化学报, 2023, 51(8): 113-123. |
[14] | 程璐, 陈许宁, 胡培君, 曹宵鸣. 双氧水对于单核铜分子筛催化甲烷直接氧化制甲醇反应性能的利弊[J]. 催化学报, 2023, 51(8): 135-144. |
[15] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||