催化学报 ›› 2024, Vol. 67: 166-175.DOI: 10.1016/S1872-2067(24)60148-8

• 论文 • 上一篇    下一篇

生物质基环戊酮与苯醌催化合成稠合四环高密度燃料

张旭a,b,1, 张文静a,1, 呼延成a(), 张治广b(), 曹景沛a()   

  1. a中国矿业大学化工学院, 江苏徐州 221116
    b辽宁师范大学化学化工学院, 辽宁大连 116029
  • 收稿日期:2024-08-23 接受日期:2024-09-16 出版日期:2024-12-18 发布日期:2024-11-30
  • 通讯作者: 呼延成,张治广,曹景沛
  • 作者简介:

    1共同第一作者.

  • 基金资助:
    中央高校基本科研业务费(2023QN1009);徐州市基础研究计划项目(KC23018);中国矿业大学大型仪器设备开放共享基金(DYGX-2024-34);江苏高校优势学科建设工程专项资金.

Catalytic production of fused tetracyclic high-energy-density fuel with biomass-derived cyclopentanone and benzoquinone

Xu Zhanga,b,1, Wen-Jing Zhanga,1, Yan-Cheng Hua(), Zhi-Guang Zhangb(), Jing-Pei Caoa()   

  1. aSchool of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    bSchool of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China
  • Received:2024-08-23 Accepted:2024-09-16 Online:2024-12-18 Published:2024-11-30
  • Contact: Yan-Cheng Hu, Zhi-Guang Zhang, Jing-Pei Cao
  • About author:

    1Contributed equally to this work.

  • Supported by:
    Fundamental Research Funds for the Central Universities(2023QN1009);Xuzhou Basic Research Project(KC23018);China University of Mining and Technology (CUMT) Open Sharing Fund for Large-scale Instruments and Equipment(DYGX-2024-34);and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

摘要:

高能量密度(HED)燃料, 如广泛应用的JP-10, 在保障领空安全方面发挥着举足轻重的作用. JP-10能够在油箱体积不变的情况下, 大幅增加军用飞机的航程和有效载荷. 与此同时, 生物质作为自然界中储量丰富的碳中性能源, 积极发展其高值转化路径, 可以为实现双碳战略目标贡献力量. 从保障我国军事能源安全的角度, 合理开发利用可再生生物质原料生产高能量密度燃料, 能够有效减少对我国紧缺石油原料的依赖, 具有重要意义. 然而, 目前大多数合成的生物质燃料, 由于自身固有的环状结构, 在能量密度和凝固点方面通常难以与石油衍生的高能量密度燃料JP-10相媲美. 鉴于此, 开发新的生物质基路线合成可以媲美JP-10的高能量密度燃料, 具有重要的科学价值与应用前景.

通过对JP-10的结构特征进行分析可知, 若要获得与之相媲美的物理性质, 需要构建具有稠环体系且环数不小于4的多个碳环骨架. 本文模仿JP-10燃料结构, 以可再生的环戊酮和苯醌为原料, 设计并制备出一种独特的C16稠合四环高能量密度生物质燃料. 整个工艺过程包括环戊酮还原偶联生成邻二醇, 邻二醇脱水形成共轭二烯烃, 共轭二烯烃再与苯醌进行Diels-Alder环加成反应, 最后进行加氢脱氧. 该过程成功的关键在于开发绿色的Amberlyst-15/[Hmim]Cl离子液体催化体系, 实现邻二醇高选择性脱水生成共轭二烯. 研究结果表明, 以固体酸Amberlyst-15树脂为催化剂, 在低极性有机溶剂中, 邻二醇的脱水反应优先进行重排, 但在强极性非质子性溶剂如二甲基亚砜与N-甲基吡咯烷酮中, 目标产物共轭二烯选择性有所提高. 研究还发现, 极性更强的咪唑型离子液体可以进一步提高选择性, 当环上取代基是长链的己基, 且配阴离子是氯离子(即离子液体是[Hmim]Cl)时, 共轭二烯的收率与选择性最高. 通过温度、催化剂及用量筛选发现, 110 ºC是最佳反应温度, Amberlyst-15树脂是最佳酸催化剂, 其用量为8 wt%时, 二烯烃的收率为85%. 特别是, Amberlyst-15/[Hmim]Cl催化体系循环使用五次后仍表现出良好的反应活性. 机理实验结果表明, 邻二醇与咪唑环之间存在强的氢键作用, 可以活化C‒O键, 促进其断裂生成碳正离子, 且配阴离子氯离子可以通过静电作用稳定碳正离子中间体, 从而抑制重排途径的发生, 提高共轭二烯选择性. 随后经过Diels-Alder环加成反应和加氢脱氧, 获得C16稠合四环燃料, 四步总产率为54%. 这种紧凑的多环结构使得燃料的密度达到0.966 g/mL、燃烧热为43.1 MJ/L、凝固点为‒67 ºC和运动粘度为12.4 cSt, 性能与JP-10相当, 所制备的高能量密度生物质燃料有望成为石油燃料JP-10的替代品.

综上所述, 本文从生物质基环戊酮和苯醌出发, 开发了四步工艺路线合成独特的C16稠合四环生物质燃料, 其具有媲美石油基高密度燃料JP-10的性能. 该工作不仅拓宽了离子液体在催化二元醇脱水方面的新应用, 还为新型高能量密度生物质燃料的设计与开发提供了新视角.

关键词: 高能量密度燃料, 环戊酮, 脱水反应, 离子液体, 氢键, 生物质

Abstract:

High-energy-density (HED) fuels (e.g. JP-10) are of great importance in safeguarding territorial air security, since they can increase the flight range and payload of military aircrafts. To reduce the reliance on limited petroleum source, the production of HED fuel with renewable biomass feedstocks is highly appealing. But currently, most of the synthetic biofuels, due to their intrinsic ring structure, are incapable of competing with JP-10 in terms of energy density and freezing point. By emulating the structural characteristic of JP-10, we herein design and prepare a special C16 fused tetracyclic biofuel using renewable cyclopentanone and benzoquinone as feedstocks. Key to success depends on selective dehydration of vicinal diol (dimer of cyclopentanone) over Amberlyst-15 in [Hmim]Cl. The Amberlyst-15/[Hmim]Cl system effectively suppresses the dominant pinacol-type rearrangement pathway and also exhibits good reusability for the dehydration. The hydrogen-bonding interaction between vicinal diol and imidazolium ring, as well as electrostatic force between carbocation intermediate and chloride anion contribute to the high diene selectivity. The compact ring framework gives rise to a density of 0.966 g/mL, combustion heat of 43.1 MJ/L, freezing point of ‒67 °C, and kinematic viscosity of 12.4 cSt, which are comparable to the properties of JP-10. It is expected that this as-prepared HED biofuel may potentially serve as a renewable alternative to petroleum fuel JP-10.

Key words: High-energy-density fuel, Cyclopentanone, Dehydration reaction, Ionic liquid, Hydrogen bond, Biomass