催化学报 ›› 2025, Vol. 72: 266-276.DOI: 10.1016/S1872-2067(25)64670-5

• 论文 • 上一篇    下一篇

稀CuRu合金与Cu/Ru双单原子的协同耦合加速碱性氢氧化的Volmer动力学

刘奕a, 周树清a, 牛成功a, 塔伊尔詹•泰勒•伊西姆詹b, 朱永法c, 王定胜c, 杨秀林a,*(), 邱介山d,*(), 武斌e,*()   

  1. a广西师范大学化学与药学学院, 广西低碳能源材料重点实验室, 广西桂林 541004, 中国
    b阿卜杜拉国王科技大学的沙特阿拉伯基础工业公司, 图瓦 23955-6900, 沙特阿拉伯
    c清华大学化学系, 北京 100084, 中国
    d北京化工大学化工学院, 化工资源工程国家重点实验室, 北京 100029, 中国
    e新加坡南洋理工大学材料科学与工程学院, 新加坡 639798, 新加坡
  • 收稿日期:2024-11-16 接受日期:2025-02-24 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: xlyang@gxnu.edu.cn (杨秀林),qiujs@mail.buct.edu.cn (邱介山),bin.wu@ntu.edu.sg (武斌).
  • 基金资助:
    国家自然科学基金(52363028);国家自然科学基金(21965005);广西自然科学基金(2021GXNSFAA076001);广西科技基地与人才课题(GUIKE AD23023004);广西科技基地与人才课题(GUIKE AD20297039);新加坡国家研究基金(U2305D4003)

Boosting the Volmer step by synergistic coupling of dilute CuRu nanoalloy with Cu/Ru dual single atoms for efficient and CO-tolerant alkaline hydrogen oxidation

Yi Liua, Shuqing Zhoua, Chenggong Niua, Tayirjan Taylor Isimjanb, Yongfa Zhuc, Dingsheng Wangc, Xiulin Yanga,*(), Jieshan Qiud,*(), Bin Wue,*()   

  1. aGuangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China
    bSaudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
    cDepartment of Chemistry, Tsinghua University, Beijing 100084 China
    dState Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    eSchool of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • Received:2024-11-16 Accepted:2025-02-24 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: xlyang@gxnu.edu.cn (X. Yang), qiujs@mail.buct.edu.cn (J. Qiu), bin.wu@ntu.edu.sg (B. Wu).
  • Supported by:
    National Natural Science Foundation of China(52363028);National Natural Science Foundation of China(21965005);Natural Science Foundation of Guangxi Province(2021GXNSFAA076001);Natural Science Foundation of Guangxi Province(2018GXNSFAA294077);Guangxi Technology Base and Talent Subject(GUIKE AD23023004);Guangxi Technology Base and Talent Subject(GUIKE AD20297039);National Research Foundation, Singapore, and A*STAR (Agency for Science, Technology and Research) under its LCER Phase 2 Programme Hydrogen & Emerging Technologies FI, Directed Hydrogen Programme(U2305D4003)

摘要:

碱性阴离子交换膜燃料电池(AEMFCs)因阴极可采用非贵金属催化氧还原而备受关注. 然而, 阳极氢氧化反应(HOR)仍依赖铂族金属(PGMs), 碱性环境下HOR动力学较酸性条件降低2-3个数量级, 迫使电极必须采用高PGMs负载以维持性能. 尽管Pt基催化剂活性优异, 但其稀缺性、高成本及CO中毒风险严重制约了AEMFCs实际应用. 钌(Ru)因成本低、氢吸附自由能(ΔGH*)接近Pt, 被视为理想替代材料, 但单质Ru的强Ru-H键阻碍了HOR的Volmer步骤, 导致动力学迟滞. 为此, 研究聚焦于多尺度电子结构调控策略: 通过将Ru与低电负性3d过渡金属进行合金化促进电子转移,优化d带中心以降低ΔGH*; 采用单原子修饰技术最大化原子利用率并提升本征活性; 结合杂原子掺杂改变载体电子分布增强催化稳定性. 这些协同策略通过优化氢(H*)与羟基(OH*)中间体的吸附强度, 为开发低成本、高效且耐CO的Ru基催化剂提供了新方向, 对推动AEMFCs商业化具有关键意义.

本文通过弱化学还原和氨辅助气相氮化制备方法, 将Cu/Ru双单原子和稀CuRu纳米合金整合在中空多孔碳载体上(N-(CuRu)NP+SA@NC), 设计并制造出了具有高活性和强抗CO中毒的Ru基HOR电催化剂. 其中N原子通过强烈的N-金属相互作用与Cu和Ru金属原子进行配位. 像差校正高角环形暗场扫描透射电子显微镜测试结果表明, 材料中同时存在孤立的Cu/Ru单原子和稀CuRu纳米合金颗粒. 光谱测试结果表明, N的掺杂致使Ru的电子云密度降低, 而Cu的电子云密度升高, 证实电子由Ru向Cu的定向转移. 这种电子重构有效优化了活性位点的吸附特性, 它使得Ru对H和CO的吸附能降低, 同时促使Cu对OH的吸附能升高, 从而在能量层面上为HOR反应的顺利推进创造了更有利的条件. 电化学测试结果表明, N-(CuRu)NP+SA@NC具有较高的交换电流密度和质量活性, 分别为3.74 mA cm-2和3.28 mA $μg{Ru}^{-1}$, 远远优于迄今为止报道的大多数Ru基催化剂. 在1000 ppm CO的高浓度环境中仍保持稳定活性, 展现出商用Pt/C无法企及的抗中毒能力. 密度泛函理论计算揭示, 合金化的稀CuRu合金纳米粒子和单分散Cu原子协同调控Ru的电子构型, 优化H/OH吸附并促进CO氧化, 从而提升碱性HOR活性和抗CO中毒能力. 系统实验和表征结果表明, N-(CuRu)NP+SA@NC较好的HOR性能可归因于以下4个因素: (1) N掺杂的多孔碳基质可有效缓解金属活性中心的溶解和团聚, 从而提高电催化剂的耐腐蚀性. (2) 连接的中空球体内外壁为电解质渗透和电子/离子转移提供了通道, 从而提高了催化活性和效率. (3) N的加入以及Cu元素调节了宿主Ru的电子结构, 从而削弱了H*/CO*的吸附, 增强了主要活性位点对OH*的吸附, 从而显著提高了催化性能和抗CO能力. (4) HBE和OHBE对N-(CuRu)NP+SA@NC表面的协同效应极大地促进了Volmer步骤, 从而加速了碱性HOR过程.

综上所述, 本文采用合金化与单原子修饰的协同策略, 精确调控了N-(CuRu)NP+SA@NC催化剂活性位点与HOR关键中间体的相互作用机制, 成功突破碱性介质中HOR动力学的限制瓶颈, 为设计高效且耐CO中毒的PGMs替代催化剂提供了新范式, 推动AEMFCs商业化进程迈出关键一步.

关键词: 稀CuRu纳米合金, N掺杂, 氢氧化反应, 协同效应, CO耐受性

Abstract:

Active and poisoning-resistant Ru-based electrocatalysts for the hydrogen oxidation reaction (HOR) are designed and fabricated by integrating Cu/Ru dual single atoms and alloy CuRu nanoparticles (N-(CuRu)NP+SA@NC) through a strategy involving weak chemical reduction and ammonia-assisted gas-phase nitridation. The resultant N-(CuRu)NP+SA@NC electrocatalysts feature nitrogen atoms coordinated to both Cu and Ru metal atoms via strong N-metal interactions. Density functional theory calculations revealed that alloyed CuRu nanoparticles and monodispersed Cu atoms are vital for altering the electronic configuration of the host Ru elements. This finely tuned structure enhanced the adsorption of H and OH and promoted CO oxidation over the N-(CuRu)NP+SA@NC electrocatalyst, resulting in high alkaline HOR activity, as evidenced by the higher exchange current density of 3.74 mA cm-2 and high mass activity of 3.28 mA μgRu-1, which are far superior to those of most Ru-based catalysts reported to date. Moreover, the N-(CuRu)NP+SA@NC electrocatalysts are resistant to CO poisoning and can be used at a high concentration of 1000 ppm CO with no distinct decay in the activity, in stark contrast to the commercial Pt/C catalyst under the same conditions.

Key words: Dilute CuRu nanoalloy, N incorporation, Hydrogen oxidation reaction, Synergistic effect, CO-tolerant