催化学报 ›› 2025, Vol. 73: 16-38.DOI: 10.1016/S1872-2067(25)64701-2
赵子昂a,1, 姜淼a,1, 李存耀a, 李怡蕙a, 朱何俊a, 林荣和b(), 袁慎峰c(
), 严丽a(
), 丁云杰a,b,d(
)
收稿日期:
2025-02-14
接受日期:
2025-03-26
出版日期:
2025-06-18
发布日期:
2025-06-12
通讯作者:
*电子信箱: dyj@dicp.ac.cn (丁云杰),yanli@dicp.ac.cn (严丽),ysf@zju.edu.cn (袁慎峰),catalysis.lin@zjnu.edu.cn (林荣和).
作者简介:
1共同第一作者.
基金资助:
Ziang Zhaoa,1, Miao Jianga,1, Cunyao Lia, Yihui Lia, Hejun Zhua, Ronghe Linb(), Shenfeng Yuanc(
), Li Yana(
), Yunjie Dinga,b,d(
)
Received:
2025-02-14
Accepted:
2025-03-26
Online:
2025-06-18
Published:
2025-06-12
Contact:
*E-mail: dyj@dicp.ac.cn (Y. Ding),yanli@dicp.ac.cn (L. Yan),ysf@zju.edu.cn (S. Yuan),catalysis.lin@zjnu.edu.cn (R. Lin).
About author:
Ronghe Lin (Hangzhou Institute of Advanced Studies, Zhejiang Normal University) received his B.S. From Taiyuan University of Technology in 2005 and Ph.D. degree in 2010 from Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences. He then stayed at DICP until 2015 and was an associate professor since 2013. He did postdoctoral research at ETH Zurich (Switzerland) with Prof. Javier Pérez-Ramírez in 2015-2019. After that he joined Zhejiang Normal University to start independent research centering on studying challenging reactions (selective hydrogenation, CO2 valorization, etc.) with industrial relevance by coupling advanced catalyst design, kinetic and spectroscopic studies. He has coauthored about 70 peer-reviewed papers.Supported by:
摘要:
化石能源是现代社会发展的基石. 我国“富煤、贫油、少气”的资源禀赋特征决定了发展新型煤化工不仅是缓解石油资源短缺、保障能源安全的关键路径, 更是推动能源结构转型、落实“双碳”战略目标的必然选择. 开发以合成气(CO/H2)为原料直接制备液体燃料、醇类及烯烃等高附加值化学品的低碳高效催化技术, 对实现“碳达峰、碳中和”目标具有重要意义. 其中, 费托合成(FTS)与氢甲酰化反应作为合成气转化制液体燃料及含氧化合物的核心工艺, 长期面临催化剂活性与选择性难以协同优化、产物分布调控复杂、均相催化剂分离困难等工业化挑战.
本文系统总结了中国科学院大连化学物理研究所合成气转化与精细化学品催化研究中心(DNL0805)在费托合成和多相氢甲酰化领域二十余年的研究进展. 基于“催化剂设计—反应机理解析—工艺优化—工业示范—产物升级”的全链条创新视角, 重点阐述了以下成果: (1)费托合成产物调控: 针对传统费托合成产物分布宽、产物选择性难以调控的问题, 提出炭载钴基催化剂(Co/AC)的精准设计策略, 通过调节活性中心的精细结构实现费托合成产物选择性定向调变, 首次提出金属钴与碳化钴组成的界面是合成气制高碳α-醇的双活性中心, 完成世界首例万吨级合成气制高碳醇工业试验和15万吨/年炭载钴基浆态床合成气制油工业示范; (2)多相氢甲酰化技术突破: 针对烯烃氢甲酰化反应的技术瓶颈, 提出全新的“均相多相化”催化剂设计理念, 通过有机膦配体结构调控及多孔有机聚合物(POPs)中丰富的高度露裸的P物种与金属离子的多种配位键相对牢固键合的固载化策略, 实现单一烯烃(乙烯、丙烯等)及费托合成副产混合烯烃的高效转化, 并建成全球首套基于固定床工艺的5万吨/年乙烯多相氢甲酰化及其加氢制正丙醇工业装置; (3)产物分离与高值化利用: 开发萃取-精馏耦合技术实现费托产物中烷烃与高碳醇的高效分离, 并进一步通过醇脱水、氧化及烯烃聚合等反应路径, 将高碳醇转化为线性α-烯烃(LAO)、聚α-烯烃(PAO)及短链脂肪酸等高值化学品, 拓展了煤基化学品的产业链. 最后, 从催化剂设计与规模化制备、反应工艺优化及多技术耦合等角度, 探讨合成气催化转化技术的未来发展方向, 为实验室成果向工业应用的跨越提供理论支撑.
本文旨在为高效费托合成与多相氢甲酰化催化体系的构建提供新思路, 同时为推动低碳煤化工技术的高端产业化发展及能源结构的转型提供借鉴.
赵子昂, 姜淼, 李存耀, 李怡蕙, 朱何俊, 林荣和, 袁慎峰, 严丽, 丁云杰. 费托合成与多相氢甲酰化技术耦合制高值化学品的研究进展[J]. 催化学报, 2025, 73: 16-38.
Ziang Zhao, Miao Jiang, Cunyao Li, Yihui Li, Hejun Zhu, Ronghe Lin, Shenfeng Yuan, Li Yan, Yunjie Ding. Integrated Fischer-Tropsch synthesis and heterogeneous hydroformylation technologies toward high-value commodities from syngas[J]. Chinese Journal of Catalysis, 2025, 73: 16-38.
Fig. 4. (a) Scheme of high alcohol synthesis over bi-functional catalysts from syngas. (b) The interface between metallic Co and Co2C phase and the formation mechanism of alcohol through CO dissociative adsorption and non-dissociative adsorption. Copyrights: (a) Adopted with permission from Ref. [25]. Copyright 2013, Elsevier. (b) Reprinted with permission from Ref. [16]. Copyright 2015, American Chemical Society.
Fig. 5. Schematic illustrations of the fine structure of Co2C@Co and Co@Co2C active sites (a) and the FTS mechanism on Co-Co2C catalyst (b). Copyrights: Adopted with permission from Ref. [17]. Copyright 2018, American Chemical Society.
Fig. 7. (a) The synthesis route of Rh/POPs-PPh3 catalysts. (b) Stability of Rh/POPs-PPh3 catalysts in ethylene hydroformylation. (c) Sulfur poisoning and self-recovery of Rh/POPs-PPh3 catalysts. Copyrights: (a) Reprinted with permission from Ref. [18]. Copyright 2015, Elsevier. Reprinted with permission from Ref. [42]. Copyright 2023, John Wiley and Sons.
Fig. 8. 50 kt/a commercial facility of ethylene hydroformylation based on heterogeneous mononuclear Rh complex catalyst to produce propanal/n-propanol.
Fig. 9. (a) The synthesis method of Rh/POPs-1bp&10P catalysts. (b) Catalytic performance of Rh/POPs-bp&P catalysts in propylene hydroformylation. (c) Stability of Rh/POPs-1bp&10P catalysts in propylene hydroformylation. (d) The synthesis route of Rh/POPs-bp&P(OPh)3 catalysts. (e) In situ FTIR observed after syngas adsorption processes over Rh/POPs-bp&P(OPh)3 catalysts. (f) A plausible pathway after syngas adsorption on Rh/POPs-bp&P(OPh)3 catalysts. Reprinted with permission from Ref. [20]. Copyright 2016, Royal Society of Chemistry. Reprinted with permission from Ref. [43]. Copyright 2018, Elsevier.
Fig. 10. (a) The synthesis route of Rh/y-3v-POPs-PPh3 series catalysts. (b) 13C 2D R-SLF spectra and F1 dimension slices of 13C peak at 132 ppm spectra over Rh/y-3v-POPs-PPh3 series catalysts. (c) The synthesis route of Rh/m-3v-POPs-PPh3 catalyst. (d) Catalytic performance of 1-octene hydroformylation over Rh/m-3v-POPs-PPh3 catalyst. Reprinted with permission from Ref. [45]. Copyright 2021, Royal Society of Chemistry. Reprinted with permission from Ref. [46]. Copyright 2022, American Chemical Society.
Fig. 11. (a) The structure diagram of Rh/POPs-PPO&PPh3 series catalysts. (b) In situ DRIFTs with CO on Rh/POPs-PPO&PPh3 series catalysts. (c) Path I for linear aldehyde and path II for branched aldehyde formation. (d) DFT calculations for Rh/POPs-PPO&PPh3 series catalysts. Reprinted with permission from Ref. [47]. Copyright 2023, Elsevier.
Fraction | Main components | |
---|---|---|
Alcohol | Paraffin | |
Fraction I | C1-C3 | C5-C7 |
Fraction II | C4, C5 | C8, C9 |
Fraction III | C6, C7 | C10, C11 |
Fraction IV | C8, C9 | C12, C13 |
Fraction V | C10, C11 | C14, C15 |
Fraction VI | C12+ | C16+ |
Table 1 Main distillation fractions of FTS products.
Fraction | Main components | |
---|---|---|
Alcohol | Paraffin | |
Fraction I | C1-C3 | C5-C7 |
Fraction II | C4, C5 | C8, C9 |
Fraction III | C6, C7 | C10, C11 |
Fraction IV | C8, C9 | C12, C13 |
Fraction V | C10, C11 | C14, C15 |
Fraction VI | C12+ | C16+ |
System | T/K | Model | Ref. |
---|---|---|---|
Ethanol + butanol + octane + water | 298.15 | NRTL | [ |
Ethanol + butanol + nonane + water | |||
Ethanol + butanol + octane + Nonane + water | |||
Ethanol + butanol + octane + water + tetradecane | 298.15 | NRTL | [ |
Ethanol + butanol + nonane + water + tetradecane | |||
Ethanol + butanol + octane + nonane + water + tetradecane | |||
Ethanol + hexanol + decane + water | 298.15 | UNIQUAC | [ |
Ethanol + hexanol + undecane + water | |||
Ethanol + heptanol + decane + water | |||
Ethanol + heptanol + undecane + water | |||
Ethanol + hexanol + heptanol + decane + undecane + water | |||
Ethanol + octanol + dodecane + water | 293.15 298.15 303.15 | NRTL | [ |
Ethanol + octanol + Tridecane + water | |||
Ethanol + nonanol + Dodecane + water | |||
Ethanol + nonanol + Tridecane + water | |||
Ethanol + octanol + nonanol + dodecane + tridecane + water | |||
Ethanol + decanol + tetradecane + water | 293.15 298.15 303.15 | UNIQUAC | [ |
Ethanol + decanol + pentadecane + water | |||
Ethanol + undecanol + tetradecane + water | |||
Ethanol + undecanol + pentadecane + water | |||
Ethanol + decanol + undecanol + tetradecane + pentadecane + water | |||
Ethanol + decanol + undecanol + tetradecane + pentadecane + water + octadecane | 303.15 308.15 313.15 | UNIQUAC | [ |
Table 2 Systems whose LLE data have been measured.
System | T/K | Model | Ref. |
---|---|---|---|
Ethanol + butanol + octane + water | 298.15 | NRTL | [ |
Ethanol + butanol + nonane + water | |||
Ethanol + butanol + octane + Nonane + water | |||
Ethanol + butanol + octane + water + tetradecane | 298.15 | NRTL | [ |
Ethanol + butanol + nonane + water + tetradecane | |||
Ethanol + butanol + octane + nonane + water + tetradecane | |||
Ethanol + hexanol + decane + water | 298.15 | UNIQUAC | [ |
Ethanol + hexanol + undecane + water | |||
Ethanol + heptanol + decane + water | |||
Ethanol + heptanol + undecane + water | |||
Ethanol + hexanol + heptanol + decane + undecane + water | |||
Ethanol + octanol + dodecane + water | 293.15 298.15 303.15 | NRTL | [ |
Ethanol + octanol + Tridecane + water | |||
Ethanol + nonanol + Dodecane + water | |||
Ethanol + nonanol + Tridecane + water | |||
Ethanol + octanol + nonanol + dodecane + tridecane + water | |||
Ethanol + decanol + tetradecane + water | 293.15 298.15 303.15 | UNIQUAC | [ |
Ethanol + decanol + pentadecane + water | |||
Ethanol + undecanol + tetradecane + water | |||
Ethanol + undecanol + pentadecane + water | |||
Ethanol + decanol + undecanol + tetradecane + pentadecane + water | |||
Ethanol + decanol + undecanol + tetradecane + pentadecane + water + octadecane | 303.15 308.15 313.15 | UNIQUAC | [ |
Fig. 13. Comparison of experimental and predicted LLE mass fraction for different systems. (a) Ethanol + Butanol + Octane + Nonane + Water. Reproduced with permission from Ref. [50]. (b) Ethanol + Butanol + Octane + Nonane + Water + Tetradecane. Reproduced with permission from Ref. [51]. (c) Ethanol + Hexanol + Heptanol + Decane + Undecane + Water. Reproduced with permission from Ref. [52]. (d) Ethanol + Octanol + Nonanol + Dodecane + Tridecane + Water. Reproduced with permission from Ref. [53]. (e) Ethanol + Decanol + Undecanol + Tetradecane + Pentadecane + Water. Reproduced with permission from Ref. [54]. (f) Ethanol + Decanol + Undecanol + Tetradecane + Pentadecane + Water + Octadecane. Reproduced with permission from Ref. [54].
Operation | Columns | Solvent ratio | NSTAGE | |||||
---|---|---|---|---|---|---|---|---|
Extraction | T101 | 4 | 3 | |||||
T102 | 0.4 | 2 | ||||||
T103 | 0.3 | 1 | ||||||
Operation | Columns | NSTAGE | FEED STAGE | Reflux ratio | Pressure (atm) | |||
Distillation | T104 | 11 | 5 | 1.5 | 0.25 | |||
T105 | 30 | 18 | 4.5 | 1 | ||||
T106 | 35 | 20 | 3.5 | 0.03 | ||||
T107 | 14 | 2 | 2 | 0.2 | ||||
T108 | 20 | 10 | 1.5 | 0.03 |
Table 3 Optimized Operating Parameters for the separation of Fraction V. Reproduced with permission from Ref. [54].
Operation | Columns | Solvent ratio | NSTAGE | |||||
---|---|---|---|---|---|---|---|---|
Extraction | T101 | 4 | 3 | |||||
T102 | 0.4 | 2 | ||||||
T103 | 0.3 | 1 | ||||||
Operation | Columns | NSTAGE | FEED STAGE | Reflux ratio | Pressure (atm) | |||
Distillation | T104 | 11 | 5 | 1.5 | 0.25 | |||
T105 | 30 | 18 | 4.5 | 1 | ||||
T106 | 35 | 20 | 3.5 | 0.03 | ||||
T107 | 14 | 2 | 2 | 0.2 | ||||
T108 | 20 | 10 | 1.5 | 0.03 |
Fraction | Purity of products/% | |
---|---|---|
Alcohol | Paraffin | |
Fraction II | 99.63 | 99.71 |
Fraction III | 99.59 | 99.55 |
Fraction IV | 99.53 | 99.58 |
Fraction V [ | 99.40 | 99.51 |
Table 4 Separation experimental results of Fractions II-V.
Fraction | Purity of products/% | |
---|---|---|
Alcohol | Paraffin | |
Fraction II | 99.63 | 99.71 |
Fraction III | 99.59 | 99.55 |
Fraction IV | 99.53 | 99.58 |
Fraction V [ | 99.40 | 99.51 |
Fig. 15. Experimental and calculated values of interfacial tension for different high alcohol-hydrocarbon-ethanol-water systems. Reproduced with permission from Ref. [55].
Fig. 16. (a) Stability performance of 0.4% Na/ reveals that the purity of both sources of decanol is above 98%, but the types of γ-Al2O3 in n-decanol dehydration at T = 602 K, LHSV = 0.25 h-1. (b) Catalytic performance of 0.4% Na/γ-Al2O3 for C8-C12 α-alcohol dehydration: S1, α-olefin, S2, iso-olefin. (c) Correlations between α-decene yield and the acid-base amounts of catalysts. Copyrights: Reprinted with permission from Ref. [66]. Copyright 2020, American Chemical Society.
Fig. 17. (a) Comparison on the performance of 0.4% Na/γ-Al2O3 in dehydration of different-decanol at 585-588 K and LHSV = 0.4 h-1. (b) Long-term stability performance of 1 L pellet catalyst (1-2 mm diameter) in a pilot plant test, using FTS-derived n-decanol as feed. (c) Ten-kilogram scale FTS-derived α-decene from the pilot test.
Fig. 18. Ambience (a) and high-pressure setup (b) for PAO synthesis. (c,d) Conversion and KV100 of the crude polymerization products under different conditions: 1-decene 150 g, t = 2 h, (c) nZr/n1-decene = 4 × 10-5, nAl/nZr = 100, T = 408 K, P = 1 atm; (d) nZr/n1-decene = 6 × 10-5, nAl/nZr = 70, t = 2 h, PH2 = 2 MPa, catalyst diluted in 3 times toluene.
Fig. 20. (a,b) The n-heptanol conversion (X) and product selectivity (S) on different catalysts. The reaction kinetics (c) and cycling perofrmance (d) of PtBi/NC0.01. (e) Performance of PtBi/NC0.01 in the oxidation of C5-C9 linear n-alcohols, benzyl alcohol, and cyclopentanol. (f) Comparison of TOF between PtBiNC0.01 and the previously reported catalysts. Reaction conditions: toluene 12 cm3, (a-d) n-heptanol 3.5 mmol, (a,b) Wcat. = 50 mg, T = 383 K, P = 0.1 MPa, t = 15 min; (c,d) Wcat. = 100 mg, T = 393 K, P = 0.2 MPa, d, t = 5 h; (e) substrates 2.4 mmol, P = 0.2 MPa, Wcat. = 50 and 100 mg for n-pentanol and the other alcohols, respectively. Copyrights: Reprinted with permission from Ref. [73]. Copyright 2023, American Chemical Society.
Abbreviation | Full name |
---|---|
ASF | Anderson-Schulz-Flory |
CGT | Concentration gradient theory |
DFT | Density functional theory |
DICP | Dalian Institute of Chemical Physics |
DRIFTs | Diffuse reflectance infrared Fourier transform spectroscopy |
EXAFS | Extended X-ray absorption fine structure |
fcc | Faced centered cubic |
FTIR | Fourier transform infrared spectroscopy |
FTS | Fischer-Tropsch synthesis |
GHSV | Gas hourly space velocity |
HAADF-STEM | High-angle annular dark-field scanning transmission election microscope |
HAS | High alcohol synthesis |
HRTEM | High-resolution transmission electron spectroscopy |
hcp | Hexagonal close-packed |
LAO | Linear α-olefins |
LHSV | Liquid hourly space velocity |
LLE | Liquid-liquid equilibrium |
PAO | Poly-α-olefins |
POPs-PPh3 | Porous organic polymers |
rc | Reaction rate |
Rh1/POPs-PPh3 | Porous organic polymer-stabilized mononuclear Rh complex |
TOF | Turnover frequency |
XANES | X-ray absorption near edge structure |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffraction |
Abbreviations
Abbreviation | Full name |
---|---|
ASF | Anderson-Schulz-Flory |
CGT | Concentration gradient theory |
DFT | Density functional theory |
DICP | Dalian Institute of Chemical Physics |
DRIFTs | Diffuse reflectance infrared Fourier transform spectroscopy |
EXAFS | Extended X-ray absorption fine structure |
fcc | Faced centered cubic |
FTIR | Fourier transform infrared spectroscopy |
FTS | Fischer-Tropsch synthesis |
GHSV | Gas hourly space velocity |
HAADF-STEM | High-angle annular dark-field scanning transmission election microscope |
HAS | High alcohol synthesis |
HRTEM | High-resolution transmission electron spectroscopy |
hcp | Hexagonal close-packed |
LAO | Linear α-olefins |
LHSV | Liquid hourly space velocity |
LLE | Liquid-liquid equilibrium |
PAO | Poly-α-olefins |
POPs-PPh3 | Porous organic polymers |
rc | Reaction rate |
Rh1/POPs-PPh3 | Porous organic polymer-stabilized mononuclear Rh complex |
TOF | Turnover frequency |
XANES | X-ray absorption near edge structure |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffraction |
|
[1] | 郝晓婷, 刘琪, 王雨薇, 张晓明, 杨恒权. 固液杂化微反应器限域铑膦配合物催化烯烃氢甲酰化反应[J]. 催化学报, 2025, 73(6): 261-270. |
[2] | 任宪轩, Rozemarijn D. E. Krösschell, 门卓武, 王鹏, Ivo A. W. Filot, Emiel J. M. Hensen. K对Hägg碳化物逆水煤气变换反应作用的理论研究[J]. 催化学报, 2025, 72(5): 289-300. |
[3] | 刘青, 尚进, 刘振东. 塑料废弃物升级回收时代的分子筛催化剂: 迈向循环经济与可持续发展[J]. 催化学报, 2025, 71(4): 54-69. |
[4] | 梁超安, 曾波, 冯保林, 史会兵, 张凤岐, 刘建华, 何林, 丁玉晓, 夏春谷. 烯烃氢甲酰化的钴基多相催化体系[J]. 催化学报, 2025, 70(3): 115-141. |
[5] | 龚能, 邓权政, 王雨娇, 王自陶, 韩璐, 吴鹏, 车顺爱. MFI介孔分子筛限域封装Co纳米颗粒选择性催化合成气转化为重质液态烃燃料[J]. 催化学报, 2025, 68(1): 246-258. |
[6] | 钟百灵, 胡俊蝶, 杨晓刚, 舒银颖, 蔡亚辉, 李长明, 曲家福. 金属有机框架中限域金属物种用于CO2加氢: 合成方法、催化机理及未来展望[J]. 催化学报, 2025, 68(1): 177-203. |
[7] | Sam Van Minnebruggen, Ka Yan Cheung, Trees De Baerdemaeker, Niels Van Velthoven, Matthias Degelin, Galahad O’Rourke, Hiroto Toyoda, Andree Iemhoff, Imke Muller, Andrei-Nicolae Parvulescu, Torsten Mattke, Jens Ferbitz, 吴勤明, 肖丰收, Toshiyuki Yokoi, Nils Bottke, Dirk De Vos. 利用择形分子筛异构化亚甲基二苯胺[J]. 催化学报, 2024, 62(7): 124-130. |
[8] | 李洋, 王雄, 胡星盛, 胡彪, 田昇, 王丙昊, 陈浪, 陈广辉, 彭超, 申升, 尹双凤. 可循环Pd/TiO2构筑及其紫外光催化苯甲醛与碘苯偶联合成二苯甲酮[J]. 催化学报, 2024, 59(4): 159-168. |
[9] | 杜晓蕊, 黄一珂, 潘晓丽, 江训柱, 苏杨, 杨静怡, 郭亚琳, 韩冰, 文承彦, 王晨光, 乔波涛. “自上而下”构筑TiO2与Pt纳米簇之间的活性界面I: 再分散过程和机制[J]. 催化学报, 2024, 58(3): 237-246. |
[10] | 杜晓蕊, 黄一珂, 潘晓丽, 江训柱, 苏杨, 杨静怡, 郭亚琳, 韩冰, 文承彦, 王晨光, 乔波涛. “自上而下”构筑TiO2与Pt纳米簇之间的活性界面II: 催化一氧化碳氧化反应性能和机理[J]. 催化学报, 2024, 58(3): 247-254. |
[11] | 党健, 李玮杰, 秦斌, 柴玉超, 武光军, 李兰冬. 分子筛限域单位点钴体系催化芳香族化合物C-H键自调节高效氧化[J]. 催化学报, 2024, 57(2): 133-142. |
[12] | 杨艳玲, 韩沛杰, 张元宝, 林敬东, 万绍隆, 王勇, 刘海超, 王帅. 用于间甲酚高效加氢脱氧制芳烃的负载型W2C纳米催化剂的活性位研究[J]. 催化学报, 2024, 67(12): 91-101. |
[13] | 佛雨萌, 宋少佳, 杨坤, 纪向阳, 杨璐源, 黄刘赛, 陈欣宇, 吴学秋, 刘坚, 赵震, 宋卫余. 从头算分子动力学模拟揭示熵效应对Co@BEA分子筛催化乙烷脱氢反应的影响[J]. 催化学报, 2024, 65(10): 195-205. |
[14] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. C4二醇的发酵生产及其化学催化升级为高价值化学品的研究进展[J]. 催化学报, 2023, 52(9): 99-126. |
[15] | 赵梦, 徐晶, 宋术岩, 张洪杰. 核壳/蛋黄壳纳米反应器用于串联催化[J]. 催化学报, 2023, 50(7): 83-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||