催化学报 ›› 2025, Vol. 77: 99-109.DOI: 10.1016/S1872-2067(25)64775-9

• 论文 • 上一篇    下一篇

低温等离子体促进Ce1-xCoxO2-δ催化剂的晶格氧活化实现低温下炭烟的高效燃烧

张飞飏a,b,1, 陈彦君a,b,1, 孙孟尧a,b, 王鹏b, 苗雨欣b, 郑中洋b, 刘诗鑫b,*(), 于学华b, 赵震a,b,*()   

  1. a中国石油大学(北京)理学院, 重质油国家重点实验室, 北京 102249
    b沈阳师范大学化学化工学院, 能源与环境催化研究所, 辽宁沈阳 110034
  • 收稿日期:2025-05-03 接受日期:2025-06-24 出版日期:2025-10-18 发布日期:2025-10-05
  • 通讯作者: *电子信箱: liushixin2008@126.com (刘诗鑫),zhenzhao@cup.edu.cn, zhaozhen1586@163.com (赵震).
  • 作者简介:

    1共同第一作者.

  • 基金资助:
    国家重点研发计划(2022YFB3504100);国家自然科学基金(22472106)

Non-thermal plasma to boost lattice oxygen activation in Ce1-xCoxO2-δ catalysts for efficient soot combustion at low temperatures

Feiyang Zhanga,b,1, Yanjun Chena,b,1, Mengyao Suna,b, Peng Wangb, Yuxin Miaob, Zhongyang Zhengb, Shixin Liub,*(), Xuehua Yub, Zhen Zhaoa,b,*()   

  1. aState Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (Beijing), Beijing 102249, China
    bInstitute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, Liaoning, China
  • Received:2025-05-03 Accepted:2025-06-24 Online:2025-10-18 Published:2025-10-05
  • Contact: *E-mail: liushixin2008@126.com (S. Liu), zhenzhao@cup.edu.cn, zhaozhen1586@163.com (Z. Zhao).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Key Research and Development Program of China(2022YFB3504100);National Natural Science Foundation of China(22472106)

摘要:

柴油机尾气排放的炭烟颗粒物是雾霾形成和PM2.5浓度升高的关键污染源. 柴油发动机的炭烟颗粒物排放主要集中在其冷启动和怠速阶段, 此时排气温度仅为100-200 °C. 然而, 受限于吸附氧和晶格氧固有的高活化能垒以及活性氧物种(ROSs)缓慢的迁移速率, 即使使用Pt/Pd催化剂, 传统的热催化炭烟燃烧也难以在低温下实现炭烟颗粒物的快速消除. 因此, 急需研发低成本的低温炭烟催化氧化技术, 以满足柴油机尾气炭烟颗粒物超低排放的需求.

低温等离子体(NTP)与催化剂的协同作用能够在温和条件下促进催化剂表面吸附氧和晶格氧的活化, 从而突破传统热催化的局限性. 目前, 已报道的NTP协同催化剂主要关注于对催化剂表面吸附氧的活化利用, 而对晶格氧的利用研究则较少, 低温下反应氧物种生成速率较低, 导致炭烟消除速率和CO2选择性偏低. 因此, 我们提出通过调控催化剂表面活性位结构以增加对NTP能量的利用效率, 从而显著提高反应氧物种的低温生成速率. 本文通过Co原子掺杂调控氧化铈表面晶格氧和吸附氧的活化能垒, 利用NTP-Ce1-xCoxO2-δ协同催化实现表面吸附氧和晶格氧同步双活化, 显著提高了低温下炭烟催化燃烧速率和CO2选择性. 200 °C和放电功率为4.3 W的条件下, NTP-Ce0.8Co0.2O2-δ表现出最高的炭烟催化燃烧速率(10 min内炭烟转化率高于90%)和CO2选择性(99.0%), 其最大能量效率为14.7 g kWh-1, 是已报道最高能量效率的2倍. 当放电功率提升至6.3 W时, 无需外部加热, 也能实现炭烟快速消除, 炭烟转化率、最大能量效率和CO2选择性分别为92.1%, 6.1 g kWh-1和97.5%. 此外, Ce0.8Co0.2O2-δ具有良好的稳定性和耐水性. 氧同位素示踪实验证实了Ce0.8Co0.2O2-δ催化剂中的晶格氧被NTP活化且在炭烟低温燃烧中起主要作用, 而吸附氧活化则提高了晶格氧消耗后的补充速率, 晶格氧的补充速率是反应速率的速控步骤. 系统表征和理论计算结果表明, Co掺杂进入CeO2晶格形成Co-Ce-O固溶体, Co-O-Ce是NTP-催化剂协同催化炭烟燃烧的主要活性位点. 此外, 非对称表面Ce-O-Co构型的晶格氧呈现“易释放-易补充”的动态平衡特性, 实现了低温下炭烟的快速燃烧.

综上所述, 本工作揭示了Ce1-xCoxO2-δ催化剂的非对称Ce-O-Co构型不仅有利于NTP促进晶格氧低温活化, 也有利于NTP促进吸附氧活化补充消耗的晶格氧, 这种动态平衡机制显著提高了催化剂对NTP能量利用效率, 为适配NTP环境的高效催化剂的设计提供了新思路.

关键词: 活性氧物种, 晶格氧, 非对称Ce-O-Co结构, 低温等离子体, 炭烟燃烧

Abstract:

Effective lattice oxygen (Olatt) activation at low temperatures has long been a challenge in catalytic oxidation reactions. Traditional thermal catalytic soot combustion, even with Pt/Pd catalysts, is inefficient at exhaust temperatures below 200  °C, particularly under conditions of frequent idling. Herein, we report an effective strategy utilizing non-thermal plasma (NTP) to activate Olatt in Ce1-xCoxO2-δ catalysts, achieving dramatic enhancement of the soot combustion rate at low temperatures. At 200 °C and 4.3 W (discharge power, Pdis), NTP-Ce0.8Co0.2O2-δ achieved 96.9% soot conversion (XC), 99.0% CO2 selectivity (S(CO2)) and a maximum energy conversion efficiency (Emax) of 14.7 g kWh-1. Compared with previously reported results, NTP-Ce0.8Co0.2O2-δ exhibits the highest S(CO2) and Emax values. Remarkably, even without heating, XC, Emax, and S(CO2) reached 92.1%, 6.1 g kWh-1, and 97.5%, respectively, at 6.3 W (Pdis). The results of characterization and theoretical calculation demonstrated that Co dopes into the CeO2 crystal lattice and forms an asymmetric Ce-O-Co structure, making oxygen “easy come, easy go”, thereby enabling the rapid combustion of soot over NTP-Ce0.8Co0.2O2-δ. This study highlights the great potential of NTP for activating Olatt and provides valuable insights into the design of efficient NTP-adapted catalysts for oxidation reactions.

Key words: Reactive oxygen species, Lattice oxygen, Asymmetric Ce-O-Co structure, Non-thermal plasma, Soot combustion