催化学报 ›› 2026, Vol. 80: 7-19.DOI: 10.1016/S1872-2067(25)64838-8
张琳星a, 谭昌龙b, 祁明雨c, 唐紫蓉a,c,*(
), 徐艺军a,b,*(
)
收稿日期:2025-06-24
接受日期:2025-08-07
出版日期:2026-01-05
发布日期:2026-01-05
通讯作者:
唐紫蓉,徐艺军
基金资助:
Lin-Xing Zhanga, Chang-Long Tanb, Ming-Yu Qic, Zi-Rong Tanga,c,*(
), Yi-Jun Xua,b,*(
)
Received:2025-06-24
Accepted:2025-08-07
Online:2026-01-05
Published:2026-01-05
Contact:
Zi-Rong Tang, Yi-Jun Xu
Supported by:摘要:
将地球上丰富的小分子(如CO2和N2)转化为尿素、甲酰胺和氨基酸等含C-N键的高附加值有机化合物, 是可持续化学领域的前沿方向. 然而, 传统热催化方法依赖高能耗条件(如Bosch-Meiser工艺需200 °C, 210 bar)和辅助化学试剂, 严重制约可持续化生产. 受自然光合作用启发, 人工光催化技术应运而生.该技术通过直接利用光子诱导的电荷载流子或间接借助活性氧物种, 在常温常压下活化C=O, N≡N等惰性化学键, 从而实现热力学不利的小分子偶联反应. 近年研究表明, CO2/CH3OH与无机含氮小分子(N2, NH3, NO3-)的光催化C-N偶联反应, 能够有效合成有机含氮化合物. 鉴于该领域的快速发展及其展现的巨大潜力, 对该新兴课题进行总结具有重要意义.
本文聚焦于半导体光催化剂介导的C-N偶联反应, 系统总结了利用含碳原料(CO2和CH3OH)与含氮小分子(N2, NH3和NO3-)通过光催化偶联合成高附加值有机含氮化合物的最新研究进展. 首先, 阐述了光驱动C-N偶联反应的基本原理和活化机制, 包括直接活化和活性氧物种介导的间接活化两种路径. 在此基础上, 进一步深入分析了尿素、甲酰胺、甘氨酸和丝氨酸目标产物选择性合成过程中的催化剂设计策略与反应机理. 特别指出, 当前光催化尿素合成可通过CO2与N2/NH3/NO3-偶联, 或CH3OH与N2偶联实现, 但该过程仍面临选择性差、活性低及反应机理不明确等挑战. 而甲酰胺的合成可通过CH3OH与NH3脱氢偶联完成. 值得注意的是, 与C1有机氮化合物(尿素和甲酰胺)的合成不同, 氨基酸的合成不仅需要精确调控C-N偶联过程, 还需要严格控制C-C偶联步骤, 以确保目标分子结构的精准构建. 在展望部分, 提出未来研究可通过缺陷工程、构建多活性位点协同催化体系、设计异质结构半导体及开发连续流动光反应器等策略提升反应性能; 强调拓展C源与N源种类以合成多样化含氮有机化合物; 建议结合先进的原位分析技术、理论模拟与同位素标记实验深入揭示反应机理; 同时指出, 可融入机器学习与人工智能技术, 为催化剂设计与反应优化提供新范式, 从而推动太阳能驱动C-N偶联反应的可持续发展.
综上, 本文系统归纳了半导体光催化小分子C-N偶联反应合成尿素、甲酰胺、甘氨酸和丝氨酸的研究现状, 深入剖析了当前面临的选择性调控难题、催化活性瓶颈及机理解析困境等现存挑战, 并探讨了未来发展方向, 旨在为有机含氮化合物的高效合成及其催化体系设计提供理论参考.
张琳星, 谭昌龙, 祁明雨, 唐紫蓉, 徐艺军. 小分子光催化C-N偶联反应[J]. 催化学报, 2026, 80: 7-19.
Lin-Xing Zhang, Chang-Long Tan, Ming-Yu Qi, Zi-Rong Tang, Yi-Jun Xu. Photocatalyzed C-N coupling reactions of small molecules[J]. Chinese Journal of Catalysis, 2026, 80: 7-19.
Fig. 1. Schematic diagram of photocatalytic synthesis of organonitrogen compounds by coupling CO2/CH3OH with nitrogenous small molecules (N2, NH3, and NO3-).
Fig. 2. The main typical reaction pathways for the photosynthesis of C-N compounds from various C and N sources: coupling of CO2 and NO3- to form urea (a), coupling of CO2 and N2 to form urea (b), coupling of CO2 and NH3 to form urea (c), coupling of CH3OH and N2 to form urea (d), coupling of CO2 and NH3 to form serine (e), coupling of CH3OH and NH3 to form formamide (f), coupling CH3OH and NO3- to form glycine (g), alternative coupling of CH3OH and NH3 to form formamide (h), and alternative coupling of CO2 and N2 to form urea (i). The asterisk represents the reaction intermediate adsorbed on the catalyst surface.
| Photocatalyst | C source | N source | Urea yield | AQY a | Light source | Ref. Year |
|---|---|---|---|---|---|---|
| Ti3+-TiO2/Fe-CNTs | CO2 | N2 | 8.88 μmol g-1 h-1 b (volume = 50 mL) | — c | 300 W high-pressure Hg lamp | [ |
| Cu1-TiO2 | CO2 | N2 | 7.20 μmol g-1 h-1 | — | 365 nm monochromatic light | [ |
| Zn0.7Ni0.3Se/g-C3N4 | CO2 | N2 | 1.12 μmol g-1 h-1 | — | 300 W Xe lamp, λ ≥ 420 nm | [ |
| Pd-CeO2 | CO2 | N2 | 9.2 μmol g-1 h-1 | — | 300 W Xe lamp | [ |
| CeO2-Vo | CO2 | N2 | 6.46 μmol g-1 h-1 | — | 300 W Xe lamp | [ |
| CdS@BiOBr | CO2 | N2 | 15 μmol g−1 h−1 | 3.93% at 475 nm | 300 W Xe lamp, λ ≥ 420 nm | [ |
| NiCoP/ZnIn2S4-x | CO2 | N2 | 13.9 μmol g−1 h−1 | — | 300 W Xe lamp, λ > 420 nm | [ |
| Ni1-CdS/WO3 | CO2 | N2 | 10.4 μmol g−1 h−1 | 0.15% at 385 nm | Xe lamp, 200 ≤ λ ≤ 800 nm | [ |
| Ru1-TiO2 | CO2 | N2 | 24.95 μmol g−1 h−1 | 6.3% at 420 nm | 300 W Xe lamp | [ |
| SiW6Mo6@MIL-101(Cr) d | CO2 | N2 | 19.1 μmol g−1 h−1 | — | 300 W Xe lamp | [ |
| SrTiO3-FeS-CoWO4 | CO2 | N2 | 134.1 μmol g−1 h−1 | — | 300 W Xe lamp, λ ≥ 420 nm | [ |
| at.-Pd@TiO2/Gr e | CO2 | N2 | 0.54 mmol gPd−1 h−1f | — | 300 W Xe lamp, λ ≥ 400 nm | [ |
| Ru-Cu/CeO2 | CO2 | N2 | 16.7 μmol g−1 h−1 | — | Xe lamp | [ |
| Ru1/CeO2-VO | CO2 | N2 | 13.73 μmol g−1 h−1 | 0.012% at 365 nm | 300 W Xe lamp | [ |
| ZCS@Cu/Fe-MOF | CO2 | N2 | 15.8 μmol g−1 h−1 | — | 300 W Xe lamp, λ > 420 nm | [ |
| Ni1/TiO2-x | CO2 | N2 | 15.73 μmol g−1 h−1 | 0.93% at 350 nm | 300 W Xe lamp | [ |
| Pt cluster/TiO2 | CH3OH | N2 | 105.68 μmol g−1 h−1 | — | 300 W Hg lamp, 200 ≤ λ ≤ 800 nm | [ |
| Pd/LTA-3A | CO2 | NH3 | 87.0 μmol gPd−1 h−1 | — | 300 W Xe lamp | [ |
| at.-Pd@TiO2/Gr e | CO2 | NH3 | 1.51 mmol gPd−1 h−1 | — | 300 W Xe lamp, λ ≥ 400 nm | [ |
| 3D-TBBD-COF | CO2 | NH3 | 523.0 μmol g−1 h−1 | 0.32% at 420 nm | 300 W Xe lamp | [ |
| P25-4h | CO | NH3 | 904.3 μmol g−1 h−1 | — | 300 W Xe lamp | [ |
| Q-TiO2/PVPD film g | CO2 | NO3- | 1.12 μmol h−1 | — | 500 W high-pressure Hg lamp, λ ≥ 300 nm | [ |
| Q-TiO2/SiO2 film | CO2 | NO3- | 1.07 μmol h−1 | — | 500 W high pressure Hg lamp, λ ≥ 300 nm | [ |
| TiO2/Cu-PVA-PAH/PSS h | CO2 | NO3- | 0.31 mmol L−1 h−1 | — | Hamamatsu E7536 Hg-Xe lamp, λ > 340 nm | [ |
| PFD:TiO2/Cu i | CO2 | NO3- | 1.1 mmol L−1 h−1 | — | 120 W high-pressure Hg lamp, λ ≤ 300 nm | [ |
| Fe2TiO5/HZSM-5 | CO2 | NO3- | 17.36 μmol g−1 h−1 | — | 250 W high-pressure Hg lamp | [ |
| at.-Pd@TiO2/Gr e | CO2 | NO3- | 1.62 mmol gPd−1 h−1 | 1.05% at 400 nm | 300 W Xe lamp, λ ≥ 400 nm | [ |
| Cs2CuBr4/TiOx-Ar j | CO2 | NO3- | 3.66 μmol g−1 h−1 | 0.022% at 405 nm | LED light | [ |
Table 1 Summary of photocatalytic urea synthesis via coupling carbonaceous with nitrogenous small molecules.
| Photocatalyst | C source | N source | Urea yield | AQY a | Light source | Ref. Year |
|---|---|---|---|---|---|---|
| Ti3+-TiO2/Fe-CNTs | CO2 | N2 | 8.88 μmol g-1 h-1 b (volume = 50 mL) | — c | 300 W high-pressure Hg lamp | [ |
| Cu1-TiO2 | CO2 | N2 | 7.20 μmol g-1 h-1 | — | 365 nm monochromatic light | [ |
| Zn0.7Ni0.3Se/g-C3N4 | CO2 | N2 | 1.12 μmol g-1 h-1 | — | 300 W Xe lamp, λ ≥ 420 nm | [ |
| Pd-CeO2 | CO2 | N2 | 9.2 μmol g-1 h-1 | — | 300 W Xe lamp | [ |
| CeO2-Vo | CO2 | N2 | 6.46 μmol g-1 h-1 | — | 300 W Xe lamp | [ |
| CdS@BiOBr | CO2 | N2 | 15 μmol g−1 h−1 | 3.93% at 475 nm | 300 W Xe lamp, λ ≥ 420 nm | [ |
| NiCoP/ZnIn2S4-x | CO2 | N2 | 13.9 μmol g−1 h−1 | — | 300 W Xe lamp, λ > 420 nm | [ |
| Ni1-CdS/WO3 | CO2 | N2 | 10.4 μmol g−1 h−1 | 0.15% at 385 nm | Xe lamp, 200 ≤ λ ≤ 800 nm | [ |
| Ru1-TiO2 | CO2 | N2 | 24.95 μmol g−1 h−1 | 6.3% at 420 nm | 300 W Xe lamp | [ |
| SiW6Mo6@MIL-101(Cr) d | CO2 | N2 | 19.1 μmol g−1 h−1 | — | 300 W Xe lamp | [ |
| SrTiO3-FeS-CoWO4 | CO2 | N2 | 134.1 μmol g−1 h−1 | — | 300 W Xe lamp, λ ≥ 420 nm | [ |
| at.-Pd@TiO2/Gr e | CO2 | N2 | 0.54 mmol gPd−1 h−1f | — | 300 W Xe lamp, λ ≥ 400 nm | [ |
| Ru-Cu/CeO2 | CO2 | N2 | 16.7 μmol g−1 h−1 | — | Xe lamp | [ |
| Ru1/CeO2-VO | CO2 | N2 | 13.73 μmol g−1 h−1 | 0.012% at 365 nm | 300 W Xe lamp | [ |
| ZCS@Cu/Fe-MOF | CO2 | N2 | 15.8 μmol g−1 h−1 | — | 300 W Xe lamp, λ > 420 nm | [ |
| Ni1/TiO2-x | CO2 | N2 | 15.73 μmol g−1 h−1 | 0.93% at 350 nm | 300 W Xe lamp | [ |
| Pt cluster/TiO2 | CH3OH | N2 | 105.68 μmol g−1 h−1 | — | 300 W Hg lamp, 200 ≤ λ ≤ 800 nm | [ |
| Pd/LTA-3A | CO2 | NH3 | 87.0 μmol gPd−1 h−1 | — | 300 W Xe lamp | [ |
| at.-Pd@TiO2/Gr e | CO2 | NH3 | 1.51 mmol gPd−1 h−1 | — | 300 W Xe lamp, λ ≥ 400 nm | [ |
| 3D-TBBD-COF | CO2 | NH3 | 523.0 μmol g−1 h−1 | 0.32% at 420 nm | 300 W Xe lamp | [ |
| P25-4h | CO | NH3 | 904.3 μmol g−1 h−1 | — | 300 W Xe lamp | [ |
| Q-TiO2/PVPD film g | CO2 | NO3- | 1.12 μmol h−1 | — | 500 W high-pressure Hg lamp, λ ≥ 300 nm | [ |
| Q-TiO2/SiO2 film | CO2 | NO3- | 1.07 μmol h−1 | — | 500 W high pressure Hg lamp, λ ≥ 300 nm | [ |
| TiO2/Cu-PVA-PAH/PSS h | CO2 | NO3- | 0.31 mmol L−1 h−1 | — | Hamamatsu E7536 Hg-Xe lamp, λ > 340 nm | [ |
| PFD:TiO2/Cu i | CO2 | NO3- | 1.1 mmol L−1 h−1 | — | 120 W high-pressure Hg lamp, λ ≤ 300 nm | [ |
| Fe2TiO5/HZSM-5 | CO2 | NO3- | 17.36 μmol g−1 h−1 | — | 250 W high-pressure Hg lamp | [ |
| at.-Pd@TiO2/Gr e | CO2 | NO3- | 1.62 mmol gPd−1 h−1 | 1.05% at 400 nm | 300 W Xe lamp, λ ≥ 400 nm | [ |
| Cs2CuBr4/TiOx-Ar j | CO2 | NO3- | 3.66 μmol g−1 h−1 | 0.022% at 405 nm | LED light | [ |
Fig. 3. (a) Schematic of oxygen vacancy formation. EPR spectra (b), N2-TPD spectra (c), CO2-TPD spectra (d), urea production rates (e) of CeO2-Purchase (commercial) and CeO2 samples heat-treated at different temperatures. (f) Mass spectrum of CeO2-500. Gibbs free energy diagrams for urea production via alternating pathway (g) and distal pathway (h). Reprinted with permission [36]. Copyright 2024, Wiley VCH.
Fig. 4. (a) EPR spectra of Ni1-CdS/WO3 treated under different atmospheres. (b) Results of comparative experiments on Ni1-CdS/WO3 under different conditions, with error bars indicating the mean absolute deviation from a minimum of three independent tests. (c) In-situ FTIR spectra monitoring intermediates in photocatalytic urea synthesis over Ni1-CdS/WO3. (d) Gibbs free energy diagrams of the urea synthesis pathway over Ni1-CdS/WO3 catalyst. (e) Schematic diagram illustrating the mechanism of photocatalytic urea synthesis over the Ni1-CdS/WO3 catalyst. Reprinted with permission [25]. Copyright 2024, Wiley-VCH.
Fig. 5. (a) Schematic diagram of the synthesis of at.-Pd@TiO2/Gr catalyst. (b) DFT calculated free-energy diagrams for the coupling of NH3 and CO2 to urea catalyzed by at.-Pd@TiO2/Gr. Insets display atomic configurations corresponding to each step. Reprinted with permission [42]. Copyright 2024, Chinese Chemical Society. (c) The speculative mechanism for urea synthesis involving the coupling of CO2 and NO3?. Reprinted with permission [55]. Copyright 2012, Wiley-VCH. (d) The FTIR spectra of CCBT-Ar under different conditions. (e) Schematic illustration of the CO2 and NO3? co-reduction over the CCBT-Ar catalyst. Reprinted with permission [56]. Copyright 2024, Elsevier.
Fig. 6. (a) Schematic diagram of the N2 activation mechanism on a Pt center. (b) EPR spectra of TiO2 and Pt cluster/TiO2 under dark and light irradiation conditions. (c) Calculated C-N bond length for the coupling of *CHO group with N-containing intermediates generated during N2 reduction. (d) Proposed reaction pathway for urea synthesis via the coupling of CH3OH with N2. Reprinted with permission [47]. Copyright 2024, Wiley-VCH.
Fig. 7. (a) EPR spectra in the NH3 and CH3OH system (under an atmosphere of 20% O2, 2 min light irradiation), with simulated signals of DMPO-NH2, DMPO-CH2OH and DMPO-OOH. (b) EPR spectra in the NH3 system (under an atmosphere of 20% O2 and Ar, 2 min light irradiation), with simulated signals of DMPO-NH2 and DMPO-OH. (c) The proposed reaction pathways for formamide synthesis. Reprinted with permission [27]. Copyright 2024, Wiley-VCH. (d) Photocatalytic H2 and formamide production performance and hole selectivity over different metal-loaded CdS. (e) Schematic of photocatalytic formamide synthesis over Pt-CdS. Reprinted with permission [78]. Copyright 2025, Wiley-VCH.
Fig. 8. (a) Glycine synthesis rates within diverse anatase TiO2 systems. (b) Glycine yield rates over Ba2+-TiO2 under different reactants. (c) In-situ EPR spectra of TiO2 and Ba2+-TiO2 in a CH3OH and NO3- mixture under light or dark conditions. (d) The proposed mechanism of glycine synthesis from the photocatalytic conversion of CH3OH and NO3-. Reprinted with permission [82]. Copyright 2024, Wiley-VCH.
Fig. 9. Photocatalytic activity for amino acids (a) and other products (b) over left- and right-handed mesostructured ZnS (denoted as L-CMZ and D-CMZ), racemic and achiral mesostructured ZnS (denoted as RMZ and AMZ). Error bars signify the standard deviation derived from the measurements of the five independent tests. (c) The pathway for synthesizing (i) serine, (ii) alanine and (iii) glycine. Reprinted with permission [85]. Copyright 2025, Elsevier.
|
| [1] | 陆博荣, 吕春梅, 谢颖, 朱凯, 叶克, 李晓锦. 构建用于工业电流密度下高效电解尿素辅助制氢的Ni2P/CoP界面催化剂[J]. 催化学报, 2025, 69(2): 163-175. |
| [2] | 李家欣, 吕燕, 吴雪岩, 郭新玉, 杨卓君, 郭继玺, 周天华, 贾殿赠. 分级结构NiO纳米管/纳米片表面限域生长Pt亚纳米团簇催化剂用于尿素辅助节能产氢[J]. 催化学报, 2025, 69(2): 203-218. |
| [3] | 周双龙, 石月, 代钰, 詹天荣, 赖建平, 王磊. 电催化CO2和硝酸盐还原耦合甘油氧化生成尿素和草酸[J]. 催化学报, 2024, 63(8): 270-281. |
| [4] | 王志超, 王梦凡, 宦云飞, 钱涛, 熊杰, 杨成韬, 晏成林. 电催化二氧化碳与含氮小分子共还原的缺陷与界面工程[J]. 催化学报, 2024, 57(2): 1-17. |
| [5] | 孙作淑, 向雪艳, 赵秋平, 唐朝, 姜诗译, 鲁统部, 张志明, 王白帆, 尹华卿. 可批量合成的FeNi@纳米多孔碳电催化剂用于高效尿素合成[J]. 催化学报, 2024, 65(10): 153-162. |
| [6] | 尹春, 杨甫林, 王书莉, 冯立纲. 异质结构NiSe2/MoSe2用于高效尿素辅助电解水制氢[J]. 催化学报, 2023, 51(8): 225-236. |
| [7] | 李倩, 刘䶮, 李灿. 钯催化不对称烯丙基化/去对称化反应合成无保护基的2-喹啉酮骨架环状氨基酸[J]. 催化学报, 2023, 47(4): 222-228. |
| [8] | 陈晨欣, 何苏祺, Kamran Dastafkan, 邹泽华, 汪庆祥, 赵川. 海胆状NiMoO4纳米棒阵列作为高效双功能催化剂用于电催化及光伏驱动尿素电解[J]. 催化学报, 2022, 43(5): 1267-1276. |
| [9] | 王煜瑶, 李莉, 白日升, 高士钦, 冯兆池, 张强, 于吉红. 氨基酸辅助合成高活性六配位钛物种的TS-1分子筛[J]. 催化学报, 2021, 42(12): 2189-2196. |
| [10] | 代兴超, 王斌, 王爱勤, 石峰. Pd/PAL催化二氧化碳、氢气和胺反应合成甲酰胺[J]. 催化学报, 2019, 40(8): 1141-1146. |
| [11] | 张涛. 糖类化学催化转化为氨基酸[J]. 催化学报, 2018, 39(6): 1013-1016. |
| [12] | Gyeong Seon Jeong, Amal Cherian Kathalikkattil, Robin Babu, Yongchul Greg Chung, Dae Won Park. 基于氨基酸的Cu(II)-色氨酸MOF催化剂上环氧化物与CO2环加成反应[J]. 催化学报, 2018, 39(1): 63-70. |
| [13] | 张斯维, 周杰, 施晶晶, 王旻, 徐华强, 易伟. Rh(III)催化的N-甲氧基苯甲酰胺系列物选择性C-H氰基化反应[J]. 催化学报, 2015, 36(8): 1175-1182. |
| [14] | 陈娟娟, 王畅, 董彬, 冷文光, 黄军, 格日乐, 高艳安 . 离子液体催化甘油和尿素合成甘油碳酸酯[J]. 催化学报, 2015, 36(3): 336-343. |
| [15] | 赵忠奎, 李仁志, 李宇, 王桂茹. 小分子伯胺催化异噁唑有氧还原开环反应[J]. 催化学报, 2015, 36(2): 204-208. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||