催化学报 ›› 2024, Vol. 59: 169-184.DOI: 10.1016/S1872-2067(23)64613-3

• 论文 • 上一篇    下一篇

构筑可持续生物炭修饰钨酸铋复合光催化剂实现基于增强电荷转移效应的高效水净化

周恒a,1, 张蕊b,1, 岳彩燕a, 吴旭a, 严琼a, 王昊a, 张衡a,*(), 马天翼c,*()   

  1. a贵州大学精细化工研发中心, 生物质资源综合利用国家地方联合工程实验室, 绿色农药与农业生物工程教育部重点实验室, 绿色农药全国重点实验室, 贵州贵阳550025, 中国
    b沈阳药科大学制药工程学院, 辽宁沈阳110036, 中国
    c皇家墨尔本理工大学, 墨尔本, 澳大利亚
  • 收稿日期:2023-11-29 接受日期:2024-01-25 出版日期:2024-04-18 发布日期:2024-04-15
  • 通讯作者: *电子邮箱: hzhang23@gzu.edu.cn (张衡), tianyi.ma@rmit.edu.au (马天翼).
  • 作者简介:

    1共同第一作者.

  • 基金资助:
    国家自然科学基金(32302418);贵州省科技支撑计划(ZC[2023]330);贵州省基础研究计划(ZK[2022]141);贵州省教育项目(KY(2022)162);辽宁省教育厅项目(2020LQN03);探索项目(DP220100603);联动工程(LP210100467);联动工程(LP210200504);联动工程(LP210200345);联动工程(LP220100088);工业转型培训中心计划(IC180100005)

Enhanced charge transfer over sustainable biochar decorated Bi2WO6 composite photocatalyst for highly efficient water decontamination

Heng Zhoua,1, Rui Zhangb,1, Caiyan Yuea, Xu Wua, Qiong Yana, Hao Wanga, Heng Zhanga,*(), Tianyi Mac,*()   

  1. aNational Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, Guizhou, China
    bSchool of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110036, Liaoning, China
    cSchool of Science, RMIT University, Melbourne, VIC 3000, Australia
  • Received:2023-11-29 Accepted:2024-01-25 Online:2024-04-18 Published:2024-04-15
  • Contact: *E-mail: hzhang23@gzu.edu.cn (H. Zhang), tianyi.ma@rmit.edu.au (T. Ma).
  • About author:

    1Contributed equally to this work.

  • Supported by:
    The National Natural Science Foundation of China(32302418);The Guizhou Provincial Key Technology R&D Program(ZC[2023]330);The Guizhou Provincial Basic Research Program(Natural Science)(ZK[2022]141);The Guizhou Provincial Basic Research Program(KY(2022)162);The Foundation of Liaoning Province Education Administration(2020LQN03);The Discovery Project(DP220100603);The Linkage Project(LP210100467);The Linkage Project(LP210200504);The Linkage Project(LP210200345);The Linkage Project(LP220100088);The Industrial Transformation Training Centre schemes(IC180100005)

摘要:

近年来, 全球环境问题日趋严峻, 水体中的农药污染愈发严重, 亟待解决. 光催化作为一种绿色高效的技术, 在环境修复领域具有较高的应用价值. 然而, 光生载流子的快速复合和电荷利用效率低是制约光催化效率的关键问题. 生物炭(BC)是一种新兴的碳质材料, 来源于可持续利用的生物质废物, 因其出色的吸附能力在污染物去除方面备受关注. 因此, 设计并开发功能化改性的BC基复合光催化剂, 有望快速修复农药污染, 推动高效、可持续的光催化污水净化技术的发展.

本文首先以木屑生物质为原料, 在厌氧条件下热解制备了不同氮含量掺杂的BC (Nx-BC, x代表尿素与BC的质量比). 然后, 以乙二醇为溶剂, 将Nx-BC与Bi2WO6前驱体溶液混合, 通过溶剂热反应制备一系列Bi2WO6/氮掺杂BC复合材料(BWO/Nx-BC), 并用于可见光照射下光催化降解毒死蜱(CPs)农药. X射线衍射、扫描电镜、透射电镜和傅里叶红外光谱等结果表明, 成功制备了BWO/Nx-BC复合材料. 紫外-可见漫反射光谱结果表明, BWO/Nx-BC能有效吸收可见光, 结合X射线光电子能谱分析, 确定了其导带和价带位置. 特别是, 氮掺杂后的BWO/N3-BC在电子导电性提高的同时, 还保持了良好的吸附性能, 有效避免了光生载流子的重组. 通过光致发光光谱、时间分辨光致发光光谱、光电流强度曲线和电化学阻抗曲线研究了光催化剂的载流子分离和重组行为. 结果表明, BWO/N3-BC表现出较好的光催化降解效率, 仅需0.5 h即可降解99.0%的CPs, 其降解速率分别是纯BWO和纯N3-BC的2.91倍和12.13倍. BWO/N3-BC复合材料在8次循环使用后仍保持稳定. 同时, 考虑到真实水体环境的复杂性, 本文还系统地探讨了不同操作参数对光催化降解活性的影响. 自由基清除实验和电子顺磁共振结果表明, 该反应的关键活性物质有•O2-、•OH和h+, 其中•O2-是最主要的活性物质, 并结合实验结果推测了BWO/N3-BC吸附-光降解的协同增效机制. 利用高效液相色谱-质谱技术研究了CPs的降解中间体, 提出了三种可能的降解途径, 并对每种途径进行了详细分析. 最后, 通过生态毒性试验(大肠杆菌的培养)和毒性评估软件工具对CPs及其中间体的潜在生态毒性进行了系统评估.

综上所述, 本文通过直接煅烧辅助溶剂热法成功制备了BC基光催化剂, 并揭示了其促进CPs光降解的机理, 这为环境可持续的光催化循环经济提供了参考, 也为光催化技术与废弃生物质高值利用相结合, 实现环境修复开辟了新思路.

关键词: 光催化, 生物炭, Bi2WO6, 毒死蜱, 毒性评价

Abstract:

As a green and efficient technology, photocatalysis has practical application value, especially in terms of remediating environmental contamination issues. Biochar, the carbon material derived from sustainable calcined biomass waste, has attracted attention for its efficient adsorption capacity for pollutants. Herein, nitrogen(N)-doped biochar is prepared from sawdust biomass and dexterously coupled with Bi2WO6 to synthesize a range of Bi2WO6/N-doped biochar composites (BWO/Nx-BC), which are successfully utilized for photodegradation of chlorpyrifos (CPs). After introducing N atoms, BWO/N3-BC improves conductivity of electrons while maintaining strong adsorption properties, effectively preventing the charge recombination. BWO/N3-BC demonstrates high efficiency in ultrafast photodegradation of recalcitrant pesticides, destroying 99.0% of CPs in only 0.5 h. Besides, the degradation rate constants are 2.91 and 12.13 times higher than those of pure BWO and N3-BC, respectively. Given the complexity of real water environments, the effects of different operating parameters on photocatalytic activity are explored. Free radical scavenging assay and electron paramagnetic resonance are employed to uncover the key active species (•O2-, •OH, and h+), with •O2- being the predominant contributor, and the synergistic enhancement mechanism of adsorption-photodegradation of BWO/N3-BC is successfully revealed. Also, the intermediates of CPs are identified by HPLC-MS, and three possible degradation pathways are proposed. In addition, the ecotoxicity of CPs and their intermediates are evaluated by ecotoxicity test (E. coli culture) and Toxicity Evaluation Software Tool. This work may provide an opening for environmental remediation via photocatalysis integrated with waste biomass high-value valorization.

Key words: Photocatalysis, Biochar, Bi2WO6, Chlorpyrifos, Toxicity assessment