催化学报 ›› 2024, Vol. 64: 4-31.DOI: 10.1016/S1872-2067(24)60105-1
收稿日期:
2024-02-22
接受日期:
2024-07-15
出版日期:
2024-09-18
发布日期:
2024-09-19
通讯作者:
* 电子信箱: yaoxd3@mail.sysu.edu.cn (姚向东).
Chengguang Langa, Yantong Xua, Xiangdong Yaoa,b,*()
Received:
2024-02-22
Accepted:
2024-07-15
Online:
2024-09-18
Published:
2024-09-19
Contact:
* E-mail: About author:
Xiangdong Yao is a full professor at Sun Yat-sen University. He received his Ph.D. degree in Materials Engineering at the University of Queensland (Australia) in 2005 and was awarded ARC Postdoctoral Fellow and Australian Research Fellow after joining the ARC Centre of Excellence for Functional Nanomaterials at the University of Queensland since 2003. In 2009, he moved to Griffith University as an Associate Professor then was promoted to a full professor as the group leader of Advanced Energy Materials. His group initiated the concept of defect electrocatalysis and pioneered the systematic research of this field. In 2022, Professor Xiangdong Yao joined Sun Yat-sen University, where his research focuses on energy materials and technologies, particularly in the areas of hydrogen energy and catalysis.
摘要:
氢能作为一种清洁且可再生的能源, 具有高能量密度和零排放的特性. 目前, 在已开发的多种制氢技术中, 电解水制氢因其高灵活性和无碳排放而备受关注. 当前电解水制氢催化剂主要依赖于稀缺且昂贵的铂族贵金属催化剂, 这极大地限制了氢能的商业化应用. 而非贵过渡金属基催化剂(TMCs)则面临活性位点密度低、催化性能差等问题. 因此, 为了提高能量转换效率并降低氢的制备成本, 开发高活性、高稳定性的过渡金属基催化剂成为当前的研究热点. 近年来, 缺陷策略已被证实为一种有效提高催化剂活性的手段. 因此, 系统梳理和总结缺陷的研究进展及其催化作用机制对设计高性能电催化剂及缺陷催化在不同领域的应用具有重要意义.
本文系统介绍了缺陷策略在电解水析氢催化剂(HER)中的最新研究进展. 首先, 总结了缺陷的种类和制备方法(如等离子刻蚀、高能球磨、引入牺牲剂原子、化学法和电化学法等), 并讨论了不同制备方法在规模化制备等方面的优缺点. 此外, 针对缺陷的识别和表征, 介绍了原位和非原位表征方法, 包括球差校正透射电镜、高角度环形暗场扫描透射电子显微镜、电子顺磁共振、X射线光电子能谱、原位拉曼、原位同步辐射等技术. 随后, 详细归纳了不同缺陷及混合缺陷在HER电催化剂中的应用, 并揭示其催化作用机理, 同时对缺陷电催化剂的稳定性进行了分析. 此外, 为了进一步提高催化剂性能, 概括了三种协同机制来提高缺陷催化性能, 包括优化缺陷浓度和分布、异质原子掺杂与空位之间的耦合以及原子键长与缺陷之间的协同作用. 通过原位表征和密度泛函理论计算, 揭示催化剂的活性位点及其电子结构和催化机制. 最后, 简要总结了缺陷策略所面临的挑战和未来的研究方向: (1)探索新的缺陷类型. 开发新缺陷类型, 以期为特定催化剂带来更好的催化活性和稳定性. (2)精准控制缺陷特征. 当前技术难以实现缺陷种类、形状、分布和浓度的精准控制, 需进一步研究以突破这一瓶颈. (3)规模化催化剂制备. 优化现有的制备方法, 解决在规模化生产中存在的催化剂均匀性等问题, 提高生产效率. (4)提升催化剂稳定性. 在复杂工况条件下, 催化剂的稳定性研究仍需深入, 以确保其长期高效运行. (5)深化催化机理研究理. 鉴于电解水反应中催化剂活性位点的动态变化及实际催化条件的复杂性, 需结合更多实验证据和理论模型, 全面解析缺陷催化机制, 为设计更高效、更稳定的催化剂提供科学依据.
综上所述, 本文系统总结了缺陷策略在HER催化剂方面的研究进展, 包括缺陷种类、制备方法、缺陷的表征、具体应用、缺陷的协同催化作用以及前景和挑战. 希望本文能推动相关研究人员进一步思考, 并为推动缺陷催化剂在电解水领域的实际应用及缺陷策略的理论和技术进一步拓展提供一定的参考和借鉴.
郎程广, 许彦桐, 姚向东. 通过缺陷优化析氢反应电催化剂: 最新研究进展与展望[J]. 催化学报, 2024, 64: 4-31.
Chengguang Lang, Yantong Xu, Xiangdong Yao. Perfecting HER catalysts via defects: Recent advances and perspectives[J]. Chinese Journal of Catalysis, 2024, 64: 4-31.
Fig. 1. (a) Schematic illustration of the synthesis of defective NiSe2. (b) The electron paramagnetic resonance spectra of NiSe2-VSe/CC and NiSe2/CC. Reproduced with permission from Ref. [50]. Copyright 2023, American Chemical Society. (c) EPR spectra of NiCoP, A-NiCoP and A-NiCoP|S-20. (d) XPS spectra of S 2p in A-NiCoP|S-20. Reproduced with permission from Ref. [51]. Copyright 2020, Elsevier. (e) SEM characterization of CVD grown MoS2 with oxygen plasma treatment. Reproduced with permission from Ref. [52]. Copyright 2016, American Chemical Society. (f) Schematic illustration for the experimental setup of inductively coupled plasma. (g) XPS spectra of Mo 3d and S 2p before and after H2 plasma treatment. Reproduced with permission from Ref. [53]. Copyright 2016, John Wiley and Sons.
Fig. 2. (a) Schematic representation of the fabrication process for monolayer MoS? nanomesh featuring defective atomic-sized pores in the basal plane. HRTEM image (b) and corresponding FFT image (c) of defective MoS2 nanomesh. Reproduced with permission from Ref. [66]. Copyright 2018, Elsevier. (d) Schematic illustration for fabricating NiTiO3/TM via ball milling. (e) Raman spectra of in situ NiTiO3/Ni, ex situ NiTiO3/Ni, ball-milled NiTiO3, and pristine NiTiO3. (f) XPS spectra of Ti 2p and O 1s from in situ NiTiO3/Ni and NiTiO3. Reproduced with permission from Ref. [67]. Copyright 2020, Royal Society of Chemistry.
Fig. 3. (a) Ni K-edge XANES for Ni3S2 and Ni3S2-VNi. (b) The differential charge density of Ni3S2-VNi (blue and yellow areas represent the electron-poor regions and the electron-rich regions, respectively). Reproduced with permission from Ref. [69]. Copyright 2022, Elsevier. (c) HAADF-STEM image of NiCoP-MoS2-VMo. (d) Electronic intensity profiles of the numbered line marked in (c). (e) EPR spectra of MoS2, Ni-MoS2, and NiCoP-MoS2-VMo. Reproduced with permission from Ref. [75]. Copyright 2022, American Chemical Society. (f) The synthesis of inverse opal-like Mo2C via the hard template method employing SiO2. Reproduced with permission from Ref. [73]. Copyright 2017, American Chemical Society.
Fig. 4. (a) Schematic diagram of the synthesis process of Vo-Co3O4@NF and Vs-Co3S4@NF. (b) EPR spectra of Co3O4@NF, Vo-Co3O4@NF, Co3S4@NF, and Vs-Co3S4@NF. Reproduced with permission from Ref. [80]. Copyright 2023, Elsevier. (c) ADF-STEM images of coalesced Se mono-vacancies induced by increasing the H2 concentration. Reproduced with permission from Ref. [85]. Copyright 2023, Elsevier. (d) High-resolution Ti 2p3/2 XPS spectra of TiO2 and TiO1.23. Reproduced with permission from Ref. [87]. Copyright 2016, American Chemical Society.
Fig. 5. (a) Schematic illustration of the synthetic process of TiVCO. (b) HAADF-STEM image of TiVCO with Ti vacancies marked by red circles. (c) Corresponding intensity profiles of Ti along the yellow line in (b). Reproduced with permission from Ref. [92]. Copyright 2023, John Wiley and Sons. (d) The synthetic illustration of the single Pt anchored defective CoSe2 via photoreduction method. (e) The unprocessed HAADF-STEM image of CoSe2-x-Pt. (f) The processed and colored HAADF-STEM image of CoSe2-x-Pt. (g) 2D atomic arrangement of bright Co atoms on (210) plane and of dark Co and Se atoms underneath (210) plane. Reproduced with permission from Ref. [42]. Copyright 2018, John Wiley and Sons.
Fig. 6. (a,b) The STEM image and the line profiles extracted from the areas marked by purple rectangles of the monolayer MoS? after etching. (c) EPR spectra of etched MoS2 with different etching durations compared to P-MoS2. Reproduced with permission from Ref. [94]. Copyright 2020, American Chemical Society. (d) Schematic representation for the preparation of Mo vacancy-rich MoP electrocatalyst. (e) EPR spectra. Reproduced with permission from Ref. [95]. Copyright 2023, Elsevier. (f,g) High-resolution XPS spectra of Ni 2p and P 2p. (h) Niδ+ and Pδ- percentages in nickel phosphides. Reproduced with permission from Ref. [98]. Copyright 2020, John Wiley and Sons.
Fig. 7. (a) Ni K-edge XAFS curves. (b) Fourier transformed k2-weighted EXAFS spectra. Reproduced with permission from Ref. [105]. Copyright 2018, American Chemical Society. Pt L3-edge (c) and radial distance χ(R) space spectra (d) with Pt foil and PtO2 as references. Wavelet transforms (WT) of Pt foil (e), and Pt of Pt-Ni2Fe1-24 (f). Reproduced with permission from Ref. [106]. Copyright 2022, John Wiley and Sons.
Fig. 8. (a) In situ Raman spectra of NiFe LDH during HER process in 1 mol L-1 KOH. (b) Magnified view of the corresponding orange wavelength region in (a). (c) Schematic illustration for the reaction mechanism of HER on NiFe LDH. Reproduced with permission from Ref. [108]. Copyright 2019, Royal Society of Chemistry. (d) In situ XANES spectra at Mo K-edge. (e) XANES spectra at Ni K-edge. (f) First-derivative spectra, and (g) Fourier-transformed R-space spectra (open points) and fits (solid lines) of Ni@1T-MoS2. Reproduced with permission from Ref. [110]. Copyright 2020, Springer Nature.
Catalytic reaction step | Acidic solution | Alkaline solution | Surface reaction step |
---|---|---|---|
Volmer step | H+ + e- + *→ H* | H2O + e- + * → H* + OH- | adsorption step |
Heyrovsky step | H* + H+ + e- → H2 + * | H2O + e- + H* → H2 + OH- + * | desorption step |
Tafel step | 2H* → H2 + 2* | 2H* → H2 + 2* | |
Overall reaction | 2H+ +2e-→ H2 | 2H2O + 2e- → H2 + OH- |
Table 1 Reaction steps for HER in acidic and alkaline media.
Catalytic reaction step | Acidic solution | Alkaline solution | Surface reaction step |
---|---|---|---|
Volmer step | H+ + e- + *→ H* | H2O + e- + * → H* + OH- | adsorption step |
Heyrovsky step | H* + H+ + e- → H2 + * | H2O + e- + H* → H2 + OH- + * | desorption step |
Tafel step | 2H* → H2 + 2* | 2H* → H2 + 2* | |
Overall reaction | 2H+ +2e-→ H2 | 2H2O + 2e- → H2 + OH- |
Catalyst | Method | Defect type | Characterization technique | Electrolyte | Overpotential at 10 mA cm-1 | Ref. |
---|---|---|---|---|---|---|
NiMoO4 | N2 plasma | S vacancies, Pt doping | XAS, EPR, XPS | 1 mol L-1 KOH | 71 mV | [ |
Vs-CoS2/CC | Ar Plasma | S vacancies | EPR, XPS, HRTEM | 1 mol L-1 KOH | 170 mV | [ |
MoS2 | O2 Plasma | O doping | XPS, Raman | 0.5 mol L-1 H2SO4 | 131 mV | [ |
N,Pt-MoS2 | N2 plasma | N,Pt doping | HADDF-STEM, XPS, EPR, XAS | 1 mol L-1 KOH | 38 mV | [ |
Bi2O3 | plasma irradiation | O vacancies | EPR, XPS, Raman | 1 mol L-1 KOH | 174 mV | [ |
MoS2 | Ar plasma | S vacancies | Raman, ACTEM | 0.5 mol L-1 H2SO4 | 170 mV | [ |
Pt/TiO2-X | plasma sputtering | atomic Pt doping | XPS, XAS, HAADF-STEM | 0.5 mol L-1 H2SO4 | 95 mV | [ |
NiSe2-VSe | Ar plasma | Se vacancies | XPS, EPR | 1 mol L-1 KOH | 91 mV | [ |
NiCoP | Ar plasma | S doping, P vacancies | EPR, XPS | 1 mol L-1 KOH | 88 mV | [ |
Ni3S2-VNi | sacrificial dopants | Ni vacancies | EPR, XPS, XAS | 1 mol L-1 KOH | 35 mV | [ |
NiCoP-MoS2-VMo | sacrificial dopants | Mo vacancies | HAADF-STEM, EPR, XPS, XAS | 1 mol L-1 KOH | 67 mV | [ |
FeP | sacrificial dopants | Fe vacancies | XPS | 0.5 mol L-1 H2SO4 | 65 mV | [ |
CoNiP-V | sacrificial dopants | Co/Ni vacancies | XPS, EPR | 1 mol L-1 KOH | 58 mV | [ |
MoxC-IOL | sacrificial dopants | Mo vacancies | XPS, | 1 mol L-1 KOH | 82 mV | [ |
MoS2 nanomesh | ball milling | S vacancies | XPS, EPR | 0.5 mol L-1 H2SO4 | 160 mV | [ |
NiTiO3/Ni hybrid | ball milling | O vacancies | XPS, EPR | 1 mol L-1 KOH | 10 mV | [ |
Ru@D-MoS2 | ball milling | Ru doping, S vacancies | HAADF-STEM, XPS, XAS | 1 mol L-1 KOH | 107 mV | [ |
NiPS3 | ball milling | Ni,S dual vacancies | XPS, XAS | 1 mol L-1 KOH | 124 mV | [ |
MoC/Mo2C | ball milling | N doping | XPS | 1 mol L-1 KOH | 112 mV | [ |
SrTi0.7Ru0.3O3‒δ | ball milling | O vacancies | XAS, XPS, EPR | 1 mol L-1 KOH | 46 mV | [ |
WTe2 | electrochemical method | Te vacancies | XPS and UPS | 0.5 mol L-1 H2SO4 | 119 mV | [ |
MoS2 | electrochemical method | S vacancies | XPS | 1 mol L-1 KOH | n/a | [ |
TiO1.23 | electrochemical method | O vacancies | XPS | 0.5 mol L-1 H2SO4 | 198 mV | [ |
LaCoO3 | electrochemical method | O vacancies | XAS, XPS | 1 mol L-1 KOH | 238 mV | [ |
Cu-FeOOH/Fe3O4 | electrochemical method | O vacancies | XAS, XPS, EPR | 1 mol L-1 KOH | n/a | [ |
N-Vo-NiMoO4 | chemical method | N doping, O vacancies | XPS, EPR | 1 mol L-1 KOH | 55 mV | [ |
MoS2 | chemical method | S vacancies | STEM, EPR, XPS, XAS | 0.5 mol L-1 H2SO4 | 131 mV | [ |
C-MoS2 | chemical method | C doping | XPS, XAS | 1 mol L-1 KOH | 45 mV | [ |
CoS2 | chemical method | S vacancies, P doping | XAS, EPR, XPS | 0.5 mol L-1 H2SO4 | 57 mV | [ |
MoSe2 | chemical method | Mn doping, Se vacancies | HAADF-STEM | 0.5 mol L-1 H2SO4 | 167 mV | [ |
Mo-doped V1.11S2 | chemical method | Mo doping, V vacancies | Raman, XPS, EPR | 0.5 mol L-1 H2SO4 | 160 mV | [ |
Table 2 Summary of catalysts modified by defect strategies.
Catalyst | Method | Defect type | Characterization technique | Electrolyte | Overpotential at 10 mA cm-1 | Ref. |
---|---|---|---|---|---|---|
NiMoO4 | N2 plasma | S vacancies, Pt doping | XAS, EPR, XPS | 1 mol L-1 KOH | 71 mV | [ |
Vs-CoS2/CC | Ar Plasma | S vacancies | EPR, XPS, HRTEM | 1 mol L-1 KOH | 170 mV | [ |
MoS2 | O2 Plasma | O doping | XPS, Raman | 0.5 mol L-1 H2SO4 | 131 mV | [ |
N,Pt-MoS2 | N2 plasma | N,Pt doping | HADDF-STEM, XPS, EPR, XAS | 1 mol L-1 KOH | 38 mV | [ |
Bi2O3 | plasma irradiation | O vacancies | EPR, XPS, Raman | 1 mol L-1 KOH | 174 mV | [ |
MoS2 | Ar plasma | S vacancies | Raman, ACTEM | 0.5 mol L-1 H2SO4 | 170 mV | [ |
Pt/TiO2-X | plasma sputtering | atomic Pt doping | XPS, XAS, HAADF-STEM | 0.5 mol L-1 H2SO4 | 95 mV | [ |
NiSe2-VSe | Ar plasma | Se vacancies | XPS, EPR | 1 mol L-1 KOH | 91 mV | [ |
NiCoP | Ar plasma | S doping, P vacancies | EPR, XPS | 1 mol L-1 KOH | 88 mV | [ |
Ni3S2-VNi | sacrificial dopants | Ni vacancies | EPR, XPS, XAS | 1 mol L-1 KOH | 35 mV | [ |
NiCoP-MoS2-VMo | sacrificial dopants | Mo vacancies | HAADF-STEM, EPR, XPS, XAS | 1 mol L-1 KOH | 67 mV | [ |
FeP | sacrificial dopants | Fe vacancies | XPS | 0.5 mol L-1 H2SO4 | 65 mV | [ |
CoNiP-V | sacrificial dopants | Co/Ni vacancies | XPS, EPR | 1 mol L-1 KOH | 58 mV | [ |
MoxC-IOL | sacrificial dopants | Mo vacancies | XPS, | 1 mol L-1 KOH | 82 mV | [ |
MoS2 nanomesh | ball milling | S vacancies | XPS, EPR | 0.5 mol L-1 H2SO4 | 160 mV | [ |
NiTiO3/Ni hybrid | ball milling | O vacancies | XPS, EPR | 1 mol L-1 KOH | 10 mV | [ |
Ru@D-MoS2 | ball milling | Ru doping, S vacancies | HAADF-STEM, XPS, XAS | 1 mol L-1 KOH | 107 mV | [ |
NiPS3 | ball milling | Ni,S dual vacancies | XPS, XAS | 1 mol L-1 KOH | 124 mV | [ |
MoC/Mo2C | ball milling | N doping | XPS | 1 mol L-1 KOH | 112 mV | [ |
SrTi0.7Ru0.3O3‒δ | ball milling | O vacancies | XAS, XPS, EPR | 1 mol L-1 KOH | 46 mV | [ |
WTe2 | electrochemical method | Te vacancies | XPS and UPS | 0.5 mol L-1 H2SO4 | 119 mV | [ |
MoS2 | electrochemical method | S vacancies | XPS | 1 mol L-1 KOH | n/a | [ |
TiO1.23 | electrochemical method | O vacancies | XPS | 0.5 mol L-1 H2SO4 | 198 mV | [ |
LaCoO3 | electrochemical method | O vacancies | XAS, XPS | 1 mol L-1 KOH | 238 mV | [ |
Cu-FeOOH/Fe3O4 | electrochemical method | O vacancies | XAS, XPS, EPR | 1 mol L-1 KOH | n/a | [ |
N-Vo-NiMoO4 | chemical method | N doping, O vacancies | XPS, EPR | 1 mol L-1 KOH | 55 mV | [ |
MoS2 | chemical method | S vacancies | STEM, EPR, XPS, XAS | 0.5 mol L-1 H2SO4 | 131 mV | [ |
C-MoS2 | chemical method | C doping | XPS, XAS | 1 mol L-1 KOH | 45 mV | [ |
CoS2 | chemical method | S vacancies, P doping | XAS, EPR, XPS | 0.5 mol L-1 H2SO4 | 57 mV | [ |
MoSe2 | chemical method | Mn doping, Se vacancies | HAADF-STEM | 0.5 mol L-1 H2SO4 | 167 mV | [ |
Mo-doped V1.11S2 | chemical method | Mo doping, V vacancies | Raman, XPS, EPR | 0.5 mol L-1 H2SO4 | 160 mV | [ |
Fig. 10. (a) The HAADF-STEM images of the WO3 and WO2.9. (b) The free energy diagram of HER for variously active sites on WO3(001) and WO2.9(010). Reproduced with permission from Ref. [141]. Copyright 2015, Springer Nature. (c) In situ ATR-FTIRS of *H bands recorded on S sites in NiS2. Reproduced with permission from Ref. [142]. Copyright 2024, Springer Nature. (d) Schematic description of HER process in AV- and CV-MoSe2. (e) Schematic illustration of Volmer-Tafel reaction pathway of HER. Reproduced with permission from Ref. [85]. Copyright 2019, Elsevier. Comparison of (f) Projected density of state of the Ni d orbit. (g) LSV curves of NiSe2/CC, NiSe2-VSe/CC, and Pt/C. Reproduced with permission from Ref. [50]. Copyright 2023, American Chemical Society.
Fig. 11. (a) The EPR spectra of Ni3S2 and Ni3S2-VNi/NF using Zn as sacrificial dopant. (b) Ni K-edge XANES of Ni3S2-VNi and Ni3S2. Reproduced with permission from Ref. [69]. Copyright 2022, Elsevier. (c) DOS calculated for δ-FeOOH NSs with and without VFe. (d) Schematic illustration of hydrogen evolution on the Fe2 site of the δ-FeOOH surface with VFe. (e) LSV curves of fabricated catalysts in 1.0 mol L?1 KOH solution. Reproduced with permission from Ref. [145]. Copyright 2018, John Wiley and Sons.
Fig. 12. (a) High-resolution transmission microscope images of four types of vacancies in the samples: VMo, VSe, VSe2, and VMoSe2. Reproduced with permission from Ref. [147]. Copyright 2018, American Chemical Society. (b) Pair distribution function analysis of pristine NiFe LDH and v-NiFe LDH. (c) Ni K-edge and (d) Fe K-edge Fourier transforms (FT) results for NiFe LDH and v-NiFe LDH. (e) HER performance of v-NiFe LDH at neutral pH. Reproduced with permission from Ref. [148]. Copyright 2019, American Chemical Society.
Fig. 13. HAADF-STEM images (a) and the k2-weighted EXAFS spectra (b) of atomic Pt uniformly disperse in the 2D MoS2. Reproduced with permission from Ref. [161]. Copyright 2015, Royal Society of Chemistry. (c) HR-TEM images of the layered structure of Pt/TiO2-X catalyst. (d) Electrochemical HER activity and stability of Pt/TiO2-X electrocatalyst. Reproduced with permission from Ref. [166]. Copyright 2021, Elsevier. (e,f) The influence of the Bader charge (ΔQ) and the d-band center (εd) of M-Ni2P on hydrogen adsorption free energy (ΔGH*) (M = Ti, Nb, V, Li, Cr, Na, Mn, Fe, Co, Sn, and Pb). Reproduced with permission from Ref. [167]. Copyright 2021, Elsevier.
Fig. 14. Temperature-dependent XRD patterns (a) and P 2s XPS spectra (b). Reproduced with permission from Ref. [174]. Copyright 2018, Springer Nature. HRTEM images (c) and corresponding FFT patterns (d) reveal the evolution of the degree of disorder. All scale bars represent 5 nm. (e) The DOS of the oxygen-incorporated MoS2 (top) and the pristine 2H-MoS2 (bottom). Reproduced with permission from Ref. [176]. Copyright 2021, John Wiley and Sons. (f) HRTEM image amorphous NiCo LDH. (g) LSV polarization curves for HER in 1 mol L-1 KOH. Reproduced with permission from Ref. [177]. Copyright 2020, Elsevier. (h) In situ XRD patterns for S-Co3O4/CC recorded during HER. (i,j) In situ Raman spectra of S-Co3O4/CC when the applied potentials shifted from -300 mV to increasingly positive potentials at low and high frequency range, respectively. (k) Co K-edge XANES spectra for S-Co3O4/CC recorded during HER. Reproduced with permission from Ref. [178]. Copyright 2024, John Wiley and Sons.
Fig. 15. (a) LSV curves measured in 1 mol L-1 KOH. (b) Summary of the overpotential at 10 mA cm-2 and exchange current density (j0). (c)TOF as a function of the calculated ΔGH. Reproduced with permission from Ref. [171]. Copyright 2020, John Wiley and Sons. (d) The HAADF-STEM image of Ru/Ni-MoS2. (e) The EXAFS fitting curves of Ni K-edge in Ru/Ni-MoS2 (insets: atomic structure model of Ru/Ni-MoS2). (f) Top view of the stable structure and charge density difference for the Ru atoms loaded on the MoS2 (left) without Ni and (right) with Ni. Reproduced with permission from Ref. [180]. Copyright 2021, Elsevier. (g) Atomic-resolution HAADF-STEM image and simulated image of the Co/Se co-doped MoS2. (h) The measured intensity profile along three lines labeled in (f). (i) HER polarization curves for Co/Se doped MoS2 samples. Reproduced with permission from Ref. [182]. Copyright 2020, Springer Nature.
Fig. 16. (a) Free energy vs. the reaction coordinates of MoS2 with various S-vacancy states. (b) STEM image and (c) electrochemical HER performance of S-deficient MoS2. Reproduced with permission from Ref. [94]. Copyright 2020, American Chemical Society. (d) Schematic illustration of layered molybdenum disulfide fabricated under various conditions. (e) Evolution of the S:Mo and Mo(UC):Mo(IV) ratios as a function of the annealing temperature of the electrodes. (f) Evolution of the Tafel slopes with the annealing temperatures and measured at pH ≈ 0 and pH ≈ 13. (g) Evolution of the TOF measured at 300 mV overpotential for 2H MoS2 and MoS2-xH and measured at pH ≈ 0 and pH ≈ 13. Reproduced with permission from Ref. [205]. Copyright 2019, American Chemical Society.
Fig. 17. (a) Dark-field scanning transmission electron microscopy image of SA-Ru-MoS2, where the red and green balls indicate Mo and S atoms, respectively. (b) 2D maps of electron density difference for single-atom Ru doping and S vacancy on the 2H/1T MoS2. (c) DOSs of pristine 2H-MoS2, 2H-Ru-MoS2-Sv, pristine 1T-MoS2 and 1T-Ru-MoS2-Sv. Reproduced with permission from Ref. [208]. Copyright 2019, John Wiley and Sons. (d) Free energy diagrams of the different MoS2 model catalysts under alkaline solution. (e) Schematic illustration for the electron transfer of Mo, C, and Co atom, and the valance band of β-Mo2C and Co50-Mo2C-12. (f) Relationship between specific activity at 180 mV and d-band center for β-Mo2C, Co50-Mo2C-4, Co50-Mo2C-12, and Co50-Mo2C-24. Charge density distribution of Co-Mo2C (g) and Co-Mo(v)-Mo2C (h). Reproduced with permission from Ref. [101]. Copyright 2019, John Wiley and Sons.
Fig. 18. (a) Schematic illustration of the formation of abundant O-vacancies induced by expanding the bond length of CoO nanorods. (b) Volcano plots of j0 measured in alkaline solution as a function of the ΔGH* for pure metals, Pt/C and CoO nanorods. (c) Electrocatalytic HER performance of CoO nanorods. Reproduced with permission from Ref. [219]. Copyright 2017, Springer Nature. (d) Schematic of the atomic structure for Ru@MoS2 with the changes of bond length. (e) The FT-EXAFS spectra of Ru/MoS2 before and after change the bond length. (f) Calculated PDOS of Ru/MoS2 before and after change the bond length. (g) Electrocatalytic HER performance. Reproduced with permission from Ref. [220]. Copyright 2021, Springer Nature.
Fig. 19. Current configurations of low-temperature water electrolyzers include alkaline (a), PEM (b), AEM (c) water electrolyzers. Reproduced with permission from Ref. [224]. Copyright 2022, John Wiley and Sons. (d) Polarization curves of the PEM electrolysers with P-CoSe2, M-CoSe1.28S0.72, and commercial Pt/C as cathode catalysts. (e) Chronopotentiometry curve of the PEM electrolyser operated at 1A cm-2 and 60 °C using M-CoSe1.28S0.72 and commercial IrO2 as cathode and anode, respectively. Reproduced with permission from Ref. [222]. Copyright 2023, AAAS. (f) Cell voltage versus current density plot of the AEM electrolyzer using γ-FeOOH-NS-NF as both anode and cathode and 10% Pt/C and IrO2 at room temperature. Reproduced with permission from Ref. [223]. Copyright 2024, American Chemical Society. (g) Photograph of the AEM electrolyzer performed in 1.0 mol L-1 KOH at 60 °C. (h) Current-voltage curves of AEMWE operated at different conditions. (i) Durability measurements of the AEM electrolyzer in 5.0 mol L-1 KOH at 60 °C. Reproduced with permission from Ref. [150]. Copyright 2023, Elsevier.
|
[1] | 肖佳勇, 蒋超, 张辉, 邢卓, 邱明, 余颖. 具有亲水性的无定形棒状核壳结构NiMoP@CuNWs用于中性介质中高效析氢[J]. 催化学报, 2024, 63(8): 154-163. |
[2] | 黄子超, 杨婷惠, 张颖冰, 管超群, 桂文科, 况敏, 杨建平. 提高酸性CO2电解的选择性:阳离子效应和催化剂创新[J]. 催化学报, 2024, 63(8): 61-80. |
[3] | 王金龙, 刘东妮, 李铭洋, 谷骁一, 吴仕群, 张金龙. 通过金属空位工程促进CO2光还原[J]. 催化学报, 2024, 63(8): 202-212. |
[4] | 李志鹏, 刘晓斌, 于青平, 屈欣悦, 万均, 肖振宇, 迟京起, 王磊. 用于高电流密度析氢反应电催化剂的研究进展[J]. 催化学报, 2024, 63(8): 33-60. |
[5] | 梅子雯, 陈克军, 谭耀, 刘秋文, 陈琴, 王其忧, 汪喜庆, 蔡超, 刘康, 傅俊伟, 刘敏. 从富含缺陷的碳载体到酞菁钴的质子供给用于增强CO2电还原[J]. 催化学报, 2024, 62(7): 190-197. |
[6] | 任小敏, 戴慧聪, 刘鑫, 杨启华. 多位点隔离的金属催化剂用于高效选择性加氢[J]. 催化学报, 2024, 62(7): 108-123. |
[7] | 陈晓, 杜云梅, 杨宇, 刘康, 赵晋灵, 夏晓丹, 王磊. 安培级电流密度下淬火优化CoPS纳米棒的晶型/非晶型比例以促进肼辅助的全水分解[J]. 催化学报, 2024, 62(7): 265-276. |
[8] | 赵万成, 马加朋, 田栋, 康宝涛, 夏方诠, 成婧, 吴亚军, 王梦遥, 武刚. 集成有CNTs和Ni-Ni(OH)2异质结构的电解析氢自支撑薄膜催化剂[J]. 催化学报, 2024, 62(7): 287-295. |
[9] | 赵贵, 路宽, 李玉楠, 卢发贵, 高朋, 南兵, 李丽娜, 张熠霄, 徐鹏涛, 刘晰, 陈立桅. 一种高效稳定的高熵合金电催化剂用于析氢反应[J]. 催化学报, 2024, 62(7): 156-165. |
[10] | 张红红, 王治伟, 隗陆, 刘雨溪, 戴洪兴, 邓积光. 催化法治理挥发性有机物污染的研究进展[J]. 催化学报, 2024, 61(6): 71-96. |
[11] | 毛海舫, 刘洋, 许振民, 卞振锋. 缺陷诱导电子-金属载体相互作用加速固液界面Fenton反应[J]. 催化学报, 2024, 61(6): 247-258. |
[12] | 徐伟, 甄超, 朱华泽, 姚婷婷, 邱建航, 梁艳, 白朔, 陈春林, 成会明, 刘岗. 六氟钽酸氨拓扑转变制备低深能级缺陷Ta3N5光阳极实现超低偏压光电化学分解水[J]. 催化学报, 2024, 61(6): 144-153. |
[13] | 丁婕婷, 王浩帆, 沈葵, 韦小明, 陈立宇, 李映伟. 具有丰富活性位点和高电子传导性的非晶MOF用于高效肼氧化[J]. 催化学报, 2024, 60(5): 351-359. |
[14] | Adel Al-Salihy, 梁策, Abdulwahab Salah, Abdel-Basit Al-Odayni, 卢子昂, 陈孟新, 刘倩倩, 徐平. 用于提升全水解性能的超低含量Ru掺杂NiMoO4@Ni3(PO4)2核壳纳米结构[J]. 催化学报, 2024, 60(5): 360-375. |
[15] | 聂翼飞, 颜红萍, 鹿苏微, 张宏伟, 齐婷婷, 梁诗景, 江莉龙. 理论指导构建Cu-O-Ti-Ov活性位点及其高效电催化还原硝酸根研究[J]. 催化学报, 2024, 59(4): 293-302. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||