催化学报 ›› 2025, Vol. 71: 246-255.DOI: 10.1016/S1872-2067(24)60237-8

• 论文 • 上一篇    下一篇

无外加氢源催化转化生物质固废制甲烷

迂文兵a, 司晓勤b, 李梦洁a, 刘正刚a, 卢锐a,*(), 路芳a,*()   

  1. a中国科学院大连化学物理研究所, 辽宁大连 116023
    b郑州大学化工学院, 河南郑州 450001
  • 收稿日期:2024-11-17 接受日期:2024-12-26 出版日期:2025-04-18 发布日期:2025-04-13
  • 通讯作者: * 电子信箱: lufang@dicp.ac.cn (路芳),lurui@dicp.ac.cn (卢锐).
  • 基金资助:
    国家自然科学基金(22378384);国家自然科学基金(22208339);中国科学院大连化学物理研究所科技创新基金(DICP I202132)

Catalytic conversion of biomass waste to methane without external hydrogen source

Wenbing Yua, Xiaoqin Sib, Mengjie Lia, Zhenggang Liua, Rui Lua,*(), Fang Lua,*()   

  1. aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bSchool of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2024-11-17 Accepted:2024-12-26 Online:2025-04-18 Published:2025-04-13
  • Contact: * E-mail: lufang@dicp.ac.cn (F. Lu),lurui@dicp.ac.cn (R. Lu).
  • Supported by:
    Natural Science Foundation of China(22378384);Natural Science Foundation of China(22208339);Youth Innovation Fund of Dalian Institute of Chemical Physics(DICP I202132)

摘要:

甲烷作为常规天然气、页岩气和可燃冰的核心组成, 不仅是关键的碳基能源, 也是重要的化工原料. 传统的气体矿藏在合理的时间尺度内(如几十年至上千年), 被视为不可再生资源. 生物甲烷以其独特的可再生特性, 显示出巨大的发展潜力, 是化石燃料的补充甚至替代品. 生物发酵作为一种极具潜力的技术, 为将生物质转化为可持续甲烷提供了稳定的路径, 但其面临的挑战包括产气效率相对较低、生产周期长以及气体产物中硫、氮含量较高等不足. 另一方面, 催化水热氢解过程能有效产出符合管道天然气标准的气体产物, 但其工艺规模的扩大和成本效益的提升受限于氢气来源的稳定性和成本.
本文首先探究了Fe, Co, Cu和Ni作为催化活性中心的金属骨架催化剂对榉木木屑制甲烷的影响. 结果表明, Ni基催化剂表现出较强的断裂C-C与C-O键的活性. 在Ni催化剂中掺入金属Mo调控催化剂的产气性能, 当Ni-Mo催化剂中Mo含量为0.4%时, 气体碳产率可达92.2%, 其中, 甲烷的产率约44.9%, C2-C4低碳烷烃收率为3.0%. 生物质通过水解反应生成葡萄糖等多糖化合物, 进一步通过脱羰基和逆羟醛缩合反应, 断裂C-C键产生CO和小分子多糖. 多糖化合物通过脱氢反应产生H2, 促进木质素转化. 反应产生的CO通过水煤气变换反应生成H2和CO2, CO和CO2分别与H2发生甲烷化反应生成CH4. 扫描电镜-能量散射谱和透射电镜结果表明, Mo原子均匀分布在催化剂中, 结合CO原位红外吸附和H2-程序升温脱附发现, 引入合适量金属Mo的催化剂具有较强的CO与H2分子的吸附能力, 从而促进了重整与后续的甲烷化反应. Ni-Mo催化剂可以高效转化不同农林废弃物制取甲烷, 并展现出较好的催化稳定性.
综上所述, 本文成功制备了高效的Ni-Mo催化剂, 实现了在自供氢气体系下高效转化生物质制备CH4, 全程无需外部氢气的供应. 在优化条件下, 经过计算每公斤生物质原料能够产生约343.6 L CH4. 这为开发无外部氢源催化原生生物质转化的新体系提供了重要参考.

关键词: 生物质固废, 镍-钼催化剂, 甲烷, 氢气, 无外加氢源

Abstract:

Methane, the primary constituent of natural gas, shale gas, and flammable ice, serves as a crucial carbon-based energy source and chemical feedstock. Traditional gas reserves are universally acknowledged as limited and non-renewable resources over an extended timespan stretching from decades to millennia. Biomethane, with its unique renewable properties, showcases remarkable development potential and presents a compelling supplement and even alternative for fossil fuel. Although catalytic hydrothermal processes appear as promising valorization routes to transfer biomass to sustainable methane, the safety and supply source of high-pressure hydrogen remain key factors restricting the widespread application. Herein, a catalytic approach without an external hydrogen source was developed to transform waste biomass resources into CH4 under the Ni-Mo catalyst. The total carbon yield of gas products reached up to 92.2%, of which the yield of methane and C2-C4 hydrocarbons were 44.9% and 3.0%, respectively. And it’s calculated that approximately 343.6 liters of CH4 could potentially be generated from 1 kilogram of raw biomass. Ni-based catalysts exhibited the robust activity in cleaving C-C and C-O bonds. And the introduction of an appropriate amount of molybdenum significantly enhanced catalytic performance of reforming and subsequent methanation reaction, likely due to the high adsorption capacity of highly dispersed Ni-Mo catalysts for carbon monoxide and hydrogen molecules, facilitating the methanation reaction. The pathway of catalytic methane production might be inferred that CO, H2 and a large number of oxygen-containing intermediates were formed via decarbonylation, dehydrogenation, and retro-aldol condensation reaction under hydrothermal condition. These intermediates then underwent the reforming reaction to generate H2 and CO2, ultimately forming CH4 through the methanation reaction.

Key words: Waste biomass, Ni-Mo catalyst, Methane, Hydrogen, Without external hydrogen source