催化学报 ›› 2025, Vol. 74: 155-166.DOI: 10.1016/S1872-2067(25)64666-3

• 论文 • 上一篇    下一篇

调控COF共价连接的多吡啶镍催化剂微环境促进光催化二氧化碳还原

李亚慧, 陈宇, 郭锦瑜, 王锐, 赵淑娜*(), 李纲*(), 臧双全*()   

  1. 郑州大学化学学院, 河南省晶态分子功能材料重点实验室, 河南郑州 450001
  • 收稿日期:2025-01-08 接受日期:2025-03-11 出版日期:2025-07-18 发布日期:2025-07-20
  • 通讯作者: *电子信箱: zhaosn@zzu.edu.cn (赵淑娜),gangli@zzu.edu.cn (李纲),zangsqzg@zzu.edu.cn (臧双全).
  • 基金资助:
    国家自然科学基金(92461304);国家自然科学基金(92356304);国家自然科学基金(22375185);国家自然科学基金(22105175);河南省中原千人计划(中原学者)(234000510007);河南省自然科学基金(252300421181)

Engineering coordination microenvironments of polypyridine Ni catalysts embedded in covalent organic frameworks for efficient CO2 photoreduction

Ya-Hui Li, Yu Chen, Jin-Yu Guo, Rui Wang, Shu-Na Zhao*(), Gang Li*(), Shuang-Quan Zang*()   

  1. Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2025-01-08 Accepted:2025-03-11 Online:2025-07-18 Published:2025-07-20
  • Contact: *E-mail: zhaosn@zzu.edu.cn (S.-N. Zhao), gangli@zzu.edu.cn (G. Li), zangsqzg@zzu.edu.cn (S.-Q. Zang).
  • Supported by:
    National Natural Science Foundation of China(92461304);National Natural Science Foundation of China(92356304);National Natural Science Foundation of China(22375185);National Natural Science Foundation of China(22105175);Zhongyuan Thousand Talents (Zhongyuan Scholars) Program of Henan Province(234000510007);Natural Science Foundation of Henan Province(252300421181)

摘要:

在全球气候变化与能源危机双重挑战下, 利用太阳能驱动CO2转化为高附加值化学品是实现“双碳”目标与能源可持续的重要途径. 多吡啶配合物因其可调的电子结构与优异的电荷转移能力, 已成为光催化CO2还原领域的研究热点. 然而, 分子催化剂普遍存在回收困难、易失活等问题, 严重制约其实际应用. 近年来, 将分子催化剂负载于多孔载体(如金属有机框架、共价有机框架(COFs)等)构建非均相催化体系, 成为突破该瓶颈的有效策略. COFs凭借高结晶性、可设计孔道的结构以及优异的稳定性, 为精准调控催化活性位点的配位微环境提供了理想平台.

本文通过后合成修饰策略, 将结构明确的多吡啶镍分子催化剂(联吡啶(BPY)、三联吡啶(TPY)和2,6-二(1-吡唑基)吡啶(BPP))共价锚定于羟基功能化COFs骨架上, 系统研究配体类型与配位阴离子(Cl⁻, CH3COO⁻和NO3)对光催化性能的影响机制. 结果表明, 与COF-O-BPYNi(NO3)和COF-O-BPPNi(NO3)相比, COF-O-TPYNi(NO3)在光催化CO2还原中表现出优异的性能, 其CO产率达到9006.0 μmol·g-1·h-1, 选择性高达95.9%. 并且COF-O-TPYNi(NO3)的性能远超于COF-O-TPYNi(Cl)(4588.4 μmol·g-1·h-1, 87.3%)和COF-O-TPYNi(CH3COO)(3591.8 μmol·g-1·h-1, 94.1%). 机理研究表明, COF-OH骨架作为电子传输通道显著提升电荷分离效率. 瞬态吸收光谱(TA)显示, COF-O-TPYNi(NO3)的光生电子寿命(τ2 = 122.6 ps)远超物理混合体系(τ2 = 65.3 ps), 证实共价连接有效抑制电子-空穴复合. 原位X-射线吸收精细结构谱揭示, 光激发下Ni位点发生动态电子转移: CO2吸附诱导Ni价态升高(+ 0.123 eV), 而光照后Ni价态降低(-0.156 eV), 表明Ni作为活性中心参与CO2活化. 密度泛函理论计算表明, TPY配体通过π共轭体系降低*COOH形成能垒(0.54 eV), 而NO3配位进一步优化Ni位点电子结构, 使速率控制步骤能垒低于BPYNi与BPPNi体系. 实验和理论研究表明, 配体和配位阴离子对活性中心的电子结构具有显著影响, 通过增强电荷分离和传输能力, 降低反应中间体*COOH的反应能垒, 从而有效提升光催化CO2还原的性能.

综上, 本研究通过配位微环境精准调控策略, 成功构建高效、稳定的COF基光催化体系, 为设计新型异相分子催化剂提供了重要参考, 并结合原位表征技术动态解析催化界面反应过程, 推动光催化CO2还原研究.

关键词: 配位环境, 阴离子调控, 共价有机框架, 多吡啶镍催化剂, 光催化CO2还原

Abstract:

The coordination engineering of catalytic centers emerges as a pivotal strategy for precise electronic configuration modulation in photocatalytic CO2 reduction. Herein, the electronic structure of active sites in polypyridine nickel catalysts is well modified through strategic ligand variation (bipyridine, terpyridine (TPY), 2,6-di(1-pyrazolyl)pyridine) and anion coordination (NO3-, Cl-, and CH3COO-), achieving enhanced CO2 performance. Crucially, covalent immobilization of these molecular catalysts within the COF-OH framework not only preserves their precisely defined and structurally adaptable characteristics but also demonstrates synergistic enhancement of CO2 adsorption capacity and charge transfer kinetics, as verified by CO2 adsorption isothermal analysis and ultrafast time-resolved transient absorption spectroscopy. Remarkably, COF-O-TPYNi(NO3-) catalyst exhibits a CO2-to-CO reduction activity of 9006.0 μmol·g-1·h-1 with 95.9% selectivity, superior to its counterpart catalysts, directly validating the mechanistic significance of precisely tailored coordination microenvironments around Ni active sites. Mechanistic studies through in situ XAFS, in situ ATR-SEIRAS and theoretical calculations reveal that this performance improvement over COF-O-TPYNi(NO3-) is attributed to the reduced reaction energy barrier of *COOH generation. This work pioneers a coordination shell engineering paradigm for rational design of molecularly defined catalytic architectures.

Key words: Coordination number, Anion regulation, Covalent organic framework, Polypyridine nickel catalyst, Photocatalytic CO2 reduction