催化学报 ›› 2025, Vol. 70: 142-206.DOI: 10.1016/S1872-2067(24)60184-1

• 综述 • 上一篇    下一篇

基于共价有机框架的光催化剂的研究进展: 原理、设计和应用

董红军a, 屈春宏a, 李春梅a, 胡博b,*(), 李鑫c,*(), 梁桂杰e, 江吉周d,*()   

  1. a江苏大学化学化工学院, 绿色化学与化工技术研究院, 江苏省绿色新材料与新能源化学工程实验室, 江苏镇江 212013
    b白城师范学院, 吉林白城 137000
    c生物质工程研究院, 农业农村部能源植物资源与利用重点实验室, 生物基材料与能源教育部重点实验室, 华南农业大学材料与能源学院,广东广州 510642
    d武汉工程大学环境生态与生物工程学院, 绿色化工过程教育部重点实验室,磷资源开发利用教育部工程研究中心, 湖北武汉 430205
    e湖北文理学院, 低维光电材料与器件湖北省重点实验室, 湖北襄阳 441053
  • 收稿日期:2024-09-19 接受日期:2024-11-05 出版日期:2025-03-18 发布日期:2025-03-20
  • 通讯作者: * 电子信箱: hubo93@bcnu.edu.cn (胡博),xinli@scau.edu.cn (李鑫),027wit@163.com (江吉周).
  • 基金资助:
    国家自然科学基金(52072153);国家自然科学基金(52202238);国家自然科学基金(62004143);湖北省重点研发计划(2022BAA084);中国博士后科学基金(2021M690023);镇江重点研发计划(SH2021021)

Recent advances of covalent organic frameworks-based photocatalysts: Principles, designs, and applications

Hongjun Donga, Chunhong Qua, Chunmei Lia, Bo Hub,*(), Xin Lic,*(), Guijie Liange, Jizhou Jiangd,*()   

  1. aAdvanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    bBaicheng Normal University, Baicheng 137000, Jilin, China
    cInstitute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
    dSchool of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
    eHubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China
  • Received:2024-09-19 Accepted:2024-11-05 Online:2025-03-18 Published:2025-03-20
  • Contact: * E-mail: hubo93@bcnu.edu.cn (B. Hu),xinli@scau.edu.cn (X. Li),027wit@163.com (J. Jiang).
  • About author:Bo Hu received his Ph.D. degree from Jiangsu University in 2024. Since July 2024, he has been working at the School of Chemistry, Baicheng Normal University. His research interest mainly focuses on the photo/electrocatalytic application of nanomaterials, particularly the photo/electrocatalytic conversion for hydrogen evolution and CO2 reduction. He has published more than 20 peer-reviewed papers.
    Xin Li (South China Agricultural University) received his B.S. and Ph.D. degrees in chemical engineering from Zhengzhou University in 2002 and the South China University of Technology in 2007, respectively. Then, he joined the South China Agricultural University as a faculty staff member, and became a professor in 2017. During 2012 and 2019, he worked as a visiting scholar at the Electrochemistry Center, the University of Texas at Austin, and the Department of Chemistry, the University of Utah, respectively. His research interests include photocatalysis, photoelectrochemistry, adsorption, biomass engineering and related materials, and device development.
    Jizhou Jiang is currently a full Professor in School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology (WIT). He completed his PhD in the Huazhong University of Science & Technology (HUST) in 2015. This was followed by a period of postdoctoral research at National University of Singapore under the supervision of Prof. Andrew T. S. Wee from 2015 to 2017. His current research focuses on the fabrication of novel 2D carbon-based materials and their applications of photo/electro‐catalysis.
  • Supported by:
    National Natural Science Foundation of China(52072153);National Natural Science Foundation of China(52202238);National Natural Science Foundation of China(62004143);Key R&D Program of Hubei Province(2022BAA084);Postdoctoral Science Foundation of China(2021M690023);Zhenjiang Key R&D Programmes(SH2021021)

摘要:

随着人类社会的不断发展, 化石能源消耗日益加剧, 这不仅导致了能源短缺, 还加剧了环境问题. 为了应对这些挑战, 亟需探索清洁、绿色的新型能源转换技术. 在此背景下,光催化技术因其能将丰富的太阳能转化为化学能而广受关注. 在光催化技术中, 光催化剂的性能至关重要. 因此, 开发新型、高效的光催化剂成为提高光催化效率的关键. 然而, 传统的无机半导体材料往往存在光响应范围窄、太阳能利用率低以及光生载流子复合快等问题. 相比之下, 共价有机框架(COFs)作为一种新型的多孔聚合物材料, 其结构具有可调谐性、预设计性、丰富的孔结构、高结晶度以及快速的电荷载流子转移等特性. 这些特性使COFs材料在光催化过程中能够高效捕获和利用光能, 促进光生载流子的分离和迁移, 进而提高光催化效率. 因此, 本文对当前COF基光催化剂的研究现状进行了系统的梳理和总结, 以期推进COFs材料在光催化领域的发展和应用.

本文系统地总结了COF基催化剂在光催化领域的研究进展. 首先, 概述了COF材料在光催化领域的应用背景及其研究发展历程. 随后, 从COF基光催化剂的基本原理和特性出发, 阐述了光催化的基本机制. 接着, 总结了COF基光催化剂的主要合成方法, 包括原位生长法、自组装法和原位聚合法, 并指出了这些方法的优势, 同时梳理了COF材料的设计思路. 在光催化反应中, 激子解离是光催化反应的关键步骤. 因此, 在上述基础上, 深入探讨了增强COF基光催化剂激子的解离策略, 这些策略涵盖调节构筑单元、设计内部电子给体-受体(D-A)结构、引入表面官能团、改善π电子相互作用以及电子结构调控等. 此外, 详细讨论了针对COF基光催化剂的工程改性策略, 旨在进一步提升其光催化活性, 并对内部激发动力学以及光催化反应路径的探索进行了详细的总结和分析. 同时, 还总结了COF基光催化剂在多个光催化领域的应用, 包括分解水制氢、二氧化碳还原、过氧化氢生产、固氮、有机物转化和污染物降解等. 最后, 针对目前的研究现状, 对COF基光催化剂未来发展面临的挑战进行了简要总结: (1)电荷传输速率限制问题依然存在; (2)难以同时确保结晶度与稳定性的双重优势; (3)具有新型空间维度和结构的COF材料仍有待开发; (4)对于具体光催化机制的深入探究仍需加强.

综上所述, 本文全面总结了近年来COF材料在光催化领域的研究进展, 涵盖了COF材料在光催化领域的研究发展历程、基本原理及构建思路、合成及改性策略、在光催化各领域的实际应用, 以及面临的挑战、应用前景与未来发展方向, 以期为COF基光催化剂的未来进一步发展提供参考和借鉴.

关键词: 共价有机框架, 光催化, 结构特征, 能量转化, 环境净化

Abstract:

Covalent organic frameworks (COFs) semiconductor materials have garnered significant attention in solar to chemical energy conversion owing to their unique properties, including structural tunability, pre-design capability, large surface area, abundant pore structures, high crystallinity, excellent chemical stability, suitable energy-band structure, fast charge carrier transfer and so on. These intrinsic features endow COFs with the remarkable candidates for various photocatalytic applications including photocatalytic H2 generation from water reduction, CO2 reduction, degradation of organic pollutants, N2 fixation, H2O2 evolution, and even organic synthesis. Here, this review comprehensively summarizes the recent advancements in COF-based materials for the above photocatalytic reactions, including the historic overview of the COF in the photocatalysis field, the fundamentals and design philosophy of COF-based photocatalysts, the advances of synthesis strategies, the structural characteristics and diversities, the practical applications in various photocatalytic fields as well as the challenges and future development direction in terms of COFs material and application perspectives. We sincerely hope this review can offer symbolic guidelines for future development COF semiconductor materials in this promising field.

Key words: Covalent organic framework, Photocatalysis, Structural feature, Energy conversion, Environmental purification