催化学报 ›› 2025, Vol. 70: 207-229.DOI: 10.1016/S1872-2067(24)60212-3

• 综述 • 上一篇    下一篇

光、电、光电催化甲烷转化至醇类物质

黄渝a,c,1, 邹磊a,b,1, 黄远标a,b,c,d,*(), 曹荣a,b,c,d,*()   

  1. a中国科学院福建物质结构研究所, 结构化学国家重点实验室, 福建福州 350002
    b中国福建光电信息科学与技术创新实验室, 福建福州 350108
    c中国科学院大学, 北京 100049
    d中国科学院大学福建学院, 福建福州 350002
  • 收稿日期:2024-10-14 接受日期:2024-12-15 出版日期:2025-03-18 发布日期:2025-03-20
  • 通讯作者: * 电子信箱: ybhuang@fjirsm.ac.cn (黄远标),rcao@fjirsm.ac.cn (曹荣).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2023YFA1507904);国家自然科学基金(22401280);国家自然科学基金(U22A20436);国家自然科学基金(22071245);国家自然科学基金(22220102005);国家自然科学基金(22033008);福建省自然科学基金(2024J08104);中国福建光电信息科学与技术创新实验室(2021ZZ103)

Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of methane to alcohol

Yu Huanga,c,1, Lei Zoua,b,1, Yuan-Biao Huanga,b,c,d,*(), Rong Caoa,b,c,d,*()   

  1. aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
    bFujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
    cUniversity of Chinese Academy of Sciences, Beijing 100049, China
    dFujian College, University of the Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
  • Received:2024-10-14 Accepted:2024-12-15 Online:2025-03-18 Published:2025-03-20
  • Contact: * E-mail: ybhuang@fjirsm.ac.cn (Y.-B. Huang),rcao@fjirsm.ac.cn (R. Cao).
  • About author:Yuanbiao Huang (Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science) obtained his PhD (2009) under the supervision of Prof. Guo-Xin Jin from Fudan University. In the same year, he joined Prof. Rong Cao's group at FJIRSM, CAS. In 2014, he joined Prof. Qiang Xu's group at AIST (National Institute of Advanced Industrial Science and Technology) as a JSPS (Japan Society for the Promotion of Science) invited fellow. In 2015, he moved back to FJIRSM, CAS and since 2017, he has been a professor at FJIRSM. His research interests include porous framework materials for CO2 catalysis.
    Rong Cao (Fujian Institute of Research on the Structure of Matter,Chinese Academy of Science) received his bachelor’s degree from University of Science and Technology of China in 1986 and obtained his PhD (1993) in FJIRSM (Fujian Institute of Research on the Structure of Matter), Chinese Academy of Sciences. Following post-doctoral experience in the Hong Kong Polytechnic University and JSPS Fellowship in Nagoya University, he became a professor at FJIRSM in 1998. Now, he is the director of FJIRSM. His main research interests include inorganic-organic hybrid materials, nanomaterials and supramolecular chemistry.
    1 Contributed equally to this work.
  • Supported by:
    National Key Research and Development Program of China(2023YFA1507904);National Natural Science Foundation of China(22401280);National Natural Science Foundation of China(U22A20436);National Natural Science Foundation of China(22071245);National Natural Science Foundation of China(22220102005);National Natural Science Foundation of China(22033008);Natural Science Foundation of Fujian Province(2024J08104);Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ103)

摘要:

甲烷高值化转化技术不仅能够解决日益严峻的能源危机, 还能缓解温室效应引发的环境问题. 光催化、电催化及光电催化技术具有节能、环保、反应条件温和等优势, 被认为是传统催化技术的有力候选. 在众多甲烷转化产物中, 醇类物质具有较高的能量密度, 同时还是大宗化学品的重要原料. 因此, 高活性、高选择性的甲烷醇化技术成为研究热点.

本综述总结了近年来光催化、电催化、光电催化甲烷氧化为醇类产物的研究进展. 首先详细介绍了光催化、电催化和光电催化甲烷氧化的基本原理, 以及催化产物的标准化检测手段, 为理解甲烷转化过程提供了理论基础. 随后, 总结了近年来基于金属、无机半导体、有机半导体及异质结复合体系在光催化、电催化及光电催化过程中甲烷C-H键的活化机制、醇类选择性生成机制以及后续的过氧化机制. 详细分析了这些过程中的影响因素, 包括催化剂的能带结构、表面性质、活性位点, 以及外部反应环境等. 据此, 深入讨论这些因素如何影响甲烷转化的活性及选择性, 以及这些催化系统中包含的反应机理. 先进甲烷选择性氧化到醇类物质的报道, 强调了催化剂与催化产物之间的构效关系, 以及光催化剂、电催化剂、光电催化剂的设计要领. 最后, 提出了目前光催化、电催化和光电催化甲烷氧化体系设计面临的挑战, 包括甲烷的水溶性问题、甲烷氧化与产物过氧化之间的矛盾、反应机理的深入理解等; 同时, 提出了对未来催化剂及反应体系设计的前瞻性展望, 希望未来通过优化, 实现更高效、更高选择性的甲烷转化.

光催化、电催化和光电催化甲烷转化技术的研究将继续深化, 特别是在催化剂设计和反应机理的理解方面. 本文系统总结了光催化、电催化和光电催化技术在甲烷转化为醇类化合物领域的最新进展, 深入探讨了这些技术中C-H键的活化和选择性氧化机制, 从催化剂结构和反应体系设计的角度提出构建高效催化剂的见解, 为未来甲烷转化体系催化剂设计提供了科学依据和新的设计思路.

关键词: 光催化, 电催化, 光电催化, 甲烷氧化, 醇类

Abstract:

The conversion of the greenhouse gas methane to value-added chemicals such as alcohols is a promising technology to mitigate environmental issue and the energy crisis. Especially, the sustainable photocatalytic, electrocatalytic and photoelectrocatalytic conversion of methane at ambient conditions is regarded as an alternative technology to replace with thermocatalysis. In this review, we summarize recent advances in photocatalytic, electrocatalytic and photoelectrocatalytic conversion of methane into alcohols. We firstly introduce the general principles of photocatalysis, electrocatalysis and photoelectrocatalysis. Then, we discuss the mechanism for selective activation of C-H bond and following oxygenation over metal, inorganic semiconductor, organic semiconductor, and heterojunction composite systems in the photocatalytic, electrocatalytic and photoelectrocatalytic methane oxidation in detail. Later, we present insights into the construction of effective photocatalyst, electrocatalyst and photoelectrocatalyst for methane conversion into alcohols from the perspective of band structures and active sites. Finally, the challenges and outlook for future designs of photocatalytic, electrocatalytic and photoelectrocatalytic methane oxidation systems are also proposed.

Key words: Photocatalysis, Electrocatalysis, Photoelectrocatalysis, Methane conversion, Alcohol