催化学报 ›› 2025, Vol. 70: 207-229.DOI: 10.1016/S1872-2067(24)60212-3
黄渝a,c,1, 邹磊a,b,1, 黄远标a,b,c,d,*(), 曹荣a,b,c,d,*(
)
收稿日期:
2024-10-14
接受日期:
2024-12-15
出版日期:
2025-03-18
发布日期:
2025-03-20
通讯作者:
* 电子信箱: ybhuang@fjirsm.ac.cn (黄远标),rcao@fjirsm.ac.cn (曹荣).
作者简介:
1共同第一作者.
基金资助:
Yu Huanga,c,1, Lei Zoua,b,1, Yuan-Biao Huanga,b,c,d,*(), Rong Caoa,b,c,d,*(
)
Received:
2024-10-14
Accepted:
2024-12-15
Online:
2025-03-18
Published:
2025-03-20
Contact:
* E-mail: About author:
Yuanbiao Huang (Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science) obtained his PhD (2009) under the supervision of Prof. Guo-Xin Jin from Fudan University. In the same year, he joined Prof. Rong Cao's group at FJIRSM, CAS. In 2014, he joined Prof. Qiang Xu's group at AIST (National Institute of Advanced Industrial Science and Technology) as a JSPS (Japan Society for the Promotion of Science) invited fellow. In 2015, he moved back to FJIRSM, CAS and since 2017, he has been a professor at FJIRSM. His research interests include porous framework materials for CO2 catalysis.Supported by:
摘要:
甲烷高值化转化技术不仅能够解决日益严峻的能源危机, 还能缓解温室效应引发的环境问题. 光催化、电催化及光电催化技术具有节能、环保、反应条件温和等优势, 被认为是传统催化技术的有力候选. 在众多甲烷转化产物中, 醇类物质具有较高的能量密度, 同时还是大宗化学品的重要原料. 因此, 高活性、高选择性的甲烷醇化技术成为研究热点.
本综述总结了近年来光催化、电催化、光电催化甲烷氧化为醇类产物的研究进展. 首先详细介绍了光催化、电催化和光电催化甲烷氧化的基本原理, 以及催化产物的标准化检测手段, 为理解甲烷转化过程提供了理论基础. 随后, 总结了近年来基于金属、无机半导体、有机半导体及异质结复合体系在光催化、电催化及光电催化过程中甲烷C-H键的活化机制、醇类选择性生成机制以及后续的过氧化机制. 详细分析了这些过程中的影响因素, 包括催化剂的能带结构、表面性质、活性位点, 以及外部反应环境等. 据此, 深入讨论这些因素如何影响甲烷转化的活性及选择性, 以及这些催化系统中包含的反应机理. 先进甲烷选择性氧化到醇类物质的报道, 强调了催化剂与催化产物之间的构效关系, 以及光催化剂、电催化剂、光电催化剂的设计要领. 最后, 提出了目前光催化、电催化和光电催化甲烷氧化体系设计面临的挑战, 包括甲烷的水溶性问题、甲烷氧化与产物过氧化之间的矛盾、反应机理的深入理解等; 同时, 提出了对未来催化剂及反应体系设计的前瞻性展望, 希望未来通过优化, 实现更高效、更高选择性的甲烷转化.
光催化、电催化和光电催化甲烷转化技术的研究将继续深化, 特别是在催化剂设计和反应机理的理解方面. 本文系统总结了光催化、电催化和光电催化技术在甲烷转化为醇类化合物领域的最新进展, 深入探讨了这些技术中C-H键的活化和选择性氧化机制, 从催化剂结构和反应体系设计的角度提出构建高效催化剂的见解, 为未来甲烷转化体系催化剂设计提供了科学依据和新的设计思路.
黄渝, 邹磊, 黄远标, 曹荣. 光、电、光电催化甲烷转化至醇类物质[J]. 催化学报, 2025, 70: 207-229.
Yu Huang, Lei Zou, Yuan-Biao Huang, Rong Cao. Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of methane to alcohol[J]. Chinese Journal of Catalysis, 2025, 70: 207-229.
Fig. 1. (a) The proposed mechanism of photocatalysis-Fenton reaction for selective CH4 conversion into methanol on P25. Reprinted with permission form Ref. [61]. Copyright 2020, Royal Society of Chemistry. (b) Production of liquid compounds from the partial photooxidation of CH4 after 4 h. Reprinted with permission form Ref. [62]. Copyright 2022, Elsevier. (c) Representative TEM images of q-BiVO4 with scale bars of 2 nm. (d) Selective oxidation of CH4 to HCHO and CH3OH for 7 h under Xe lamp (400 ≤ λ ≤ 780 nm) over q-BiVO4. (e) Proposed reaction mechanism. Reprinted with permission form Ref. [63]. Copyright 2021, Nature.
Fig. 2. (a) Yields of CH3OH in the photocatalytic oxidation of CH4 in systems of WO3/Fe3+ (2 mmol L−1), WO3/Cu2+ (0.1 mmol L−1), WO3/Ag+ (2 mmol L−1), WO3/H2O2 (2 mmol L−1) and WO3 at ∼55 °C under UVC-visible light irradiation. Reprinted with permission form Ref. [65]. Copyright 2015, Elsevier. (b) Production rates of the photocatalytic products aldehyde (CH3CHO) and ethanol (CH3CH2OH) over CeO2-raw and CeO2-x photocatalysts under simulated sunlight irradiation. Reprinted with permission form Ref. [66]. Copyright 2020, Catalysts. (c) Schematic illustration of the nitrate anion intercalation-decomposition (NID) strategy for the exfoliation of BCN into few-layered C3N4 (fl-CN). (d) Comparison of the H2O2 production rate in photocatalytic O2 reduction over the BCN and fl-CN catalysts. (e) Product distribution over the BCN and fl-CN catalysts in photocatalytic oxidation of CH4 with O2. Reprinted with permission form Ref. [67]. Copyright 2024, Wiley-VCH GmbH. (f) The proposed process of different chemical bonds cleavage on the BN surface. (g) Photocatalytic CH4 oxidation performance of BN. Reprinted with permission form Ref. [69]. Copyright 2023, Wiley-VCH GmbH.
Fig. 3. (a) HRTEM images of 2.5%Ag/TiO2 (001). (b) CH3OH selectivity and product yields of Ag-loaded TiO2 photocatalysts with predominantly exposed (001) facets. (c) Proposed photocatalytic mechanism for CH4 oxidation by O2 on the (001) facets of TiO2. Reprinted with permission form Ref. [70]. Copyright 2021, Nature. (d) CH4/O2 ratio-dependent CH4 oxidation on the as-prepared Ag/InGaN photocatalyst in the presence of water. (e) In situ IR spectrum of photocatalytic CH4 oxidation on Ag/InGaN. Reprinted with permission form Ref. [71]. Copyright 2024, Royal Society of Chemistry.
Fig. 4. (a) Product yields and liquid product selectivity at different pressure of CH4. (b) Sketch of the proposed reaction mechanism for photocatalytic CH4 oxidation to CH3OOH, CH3OH, and HCHO. Reprinted with permission form Ref. [72]. Copyright 2019, American Chemical Society. (c) Scheme for the synthetic route of Aux/ZnO (x = 0.08, 0.15,0.30, 0.75, 1.57 and 1.79). (d) Photocatalytic CH4 conversion over different loading amounts of Au on ZnO (Aux/ZnO, x = 0.08, 0.15, 0.30, 0.75, 1.57 and 1.79). Reprinted with permission form Ref. [73]. Copyright 2020, Royal Society of Chemistry. (e) Proposed mechanism of photocatalytic conversion of CH4 to HCHO or CH3OH on Au1/In2O3 or AuNPs/In2O3, respectively. Reprinted with permission form Ref. [74]. Copyright 2023, American Chemical Society.
Fig. 5. (a) Proposed reaction process of photocatalytic CH4 oxidation on Au/TiO2 and Au-CoOx/TiO2 using O2 as the oxidant. (b) Product yields and primary product selectivity on CoOx/TiO2 loaded with or without nanometals after a 2 h reaction. Reprinted with permission form Ref. [75]. Copyright 2020, American Chemical Society. (c) Comparison of the catalytic performance for various photocatalysts. (d) Proposed photocatalytic mechanism for CH4 oxidation over Cu-W-TiO2. Reprinted with permission form Ref. [76]. Copyright 2022, American Chemical Society. (e) Schematic illustration of photocatalytic CH4 conversion over Au0.2Cu0.15-ZnO photocatalysts. (f) Photocatalytic direct CH4 the conversion and the selectivity of the primary products on Aux-ZnO. (g) Photocatalytic direct CH4 the conversion and the selectivity of the primary products on Au0.2Cuy-ZnO. Reprinted with permission form Ref. [77]. Copyright 2022, American Chemical Society. (h) Photocatalytic CH4 conversion over AuPd/ZnO with varied molar ratio of Au to Pd. Reprinted with permission form Ref. [78]. Copyright 2024, Wiley-VCH GmbH.
Fig. 6. (a) Reaction energy profile of CH4 to CH3OH over Au1/WO3 and AuPs/WO3. (b) Comparison of photocatalytic CH4 oxidation products of under visible light (λ ≥ 420 nm) at room temperature (25 °C). (c) Corresponding yields of CH3OH per mole of Au over WO3, AuPs/WO3, and Au1/WO3 catalysts. Reprinted with permission form Ref. [79]. Copyright 2022, Elsevier. (d) Band energy diagram of 2DT, Pd1/2DT, and 3DT (P25). (e) Activity of Pd1/2DT for CH4 oxidation. (f) Proposed catalytic mechanism for the oxidation of methane to methanol. Reprinted with permission form Ref. [80]. Copyright 2021, American Chemical Society.
Fig. 7. (a) Scheme of the photoactivation of different components in the Bi-V-HBEA photocatalyst. (b) CH3OH and C2H6 productivity obtained with the three samples HBEA, V-HBEA, and Bi-V-HBEA at different times during the photocatalytic tests. Reprinted with permission form Ref. [82]. Copyright 2017, American Chemical Society. (c) View of the structure of PMOF-RuFe(OH) incorporating mono-iron hydroxyl. (d) Schematic showing synergic catalysis in PMOF-RuFe(OH) for selective photo-activation of the C-H bond in CH4 to CH3OH in the presence of oxygen and water. (e) Comparison of the catalytic activity for photo-oxidation of CH4 to CH3OH over PMOF-RuFe(OH) with other photocatalysts. (f) Calculated energy profiles for the activation of C-H bond in CH4 over confined mono-iron hydroxyl sites. Reprinted with permission form Ref. [83]. Copyright 2022, Nature.
Fig. 8. (a) Proposed reaction scheme for photocatalytic conversion of CH4. (b) Photocatalytic activities for conversion of CH4 of the samples at CH4 (1000 ppm) and pure air atmosphere under irradiation of full spectrum light: the yield of CH3OH for the pure g-C3N4, 10CW, 30CW, 70CW, and pure Cs0.33WO3 samples. Reprinted with permission form Ref. [86]. Copyright 2019, American Chemical Society. (c) Schematic of the photocatalytic CH4 oxidation to ethanol by the hollow CeO2@PdO@FeOx nanosphere photocatalyst. (d) Photocatalytic production rates of liquid and gas products over CeO2, CeO2@PdO, and CeO2@PdO@FeOx. (e) ΔG of the *CH3-*CO coupling on PdFe-PdCe sites with different *CO coverages. Reprinted with permission form Ref. [88]. Copyright 2024, American Chemical Society. (f) 2D in-plane Z-scheme heterostructures composed of two different metal oxides and conventional single metal oxide semiconductor for selective CH4 photooxidation. (g) Free energy diagrams for CH4 oxidation over the ZnO/Fe2O3 porous nanosheet slab and the ZnO porous nanosheet slab. (h) Product yield over the ZnO/Fe2O3 porous nanosheets and the ZnO porous nanosheets. Reprinted with permission form Ref. [89]. Copyright 2022, American Chemical Society.
Sample | Wavelength (nm) | Product | Activity | Selectivity (%) | Ref. |
---|---|---|---|---|---|
TiO2 | Full-spectrum | CH3OH | 471 μmol g−1 h−1 | 83 | [ |
Bi2O3 | 380 ≤ λ ≤ 760 | CH3OH | 3771 μmol g−1 h−1 | 65 | [ |
q-BiVO4 | 300 ≤ λ ≤ 600 | CH3OH | 766.7 μmol g−1 h−1 | 92.8 | [ |
WO3 | λ ≥185 | CH3OH | 67.5 μmol g−1 h−1 | 37.4 | [ |
CeO2 | Full-spectrum | C2H5OH | 11.4 µmol gcat−1 h−1 | 91.5 | [ |
fl-CN-530 | 300 ≤ λ ≤ 780 | CH3OH | 12.3 µmol | 50.8 | [ |
Ag/TiO2 | 300 ≤ λ ≤ 500 | CH3OH | 4.8 mmol g−1 h−1 | 80 | [ |
Ag/InGaN | Full-spectrum | CH3OH | 45.5 mmol g−1 h−1 | 93.3 | [ |
Au/ZnO | 300 ≤ λ ≤ 500 | CH3OH | 2.06 mmol g−1 h−1 | 15.67 | [ |
Au0.75/ZnO | Full-spectrum | CH3OH | 1.37 mmol g−1 | 99.1 | [ |
AuNPs/In2O3 | 300 ≤ λ ≤ 1100 | CH3OH | 1.98 mmol g−1 h−1 | 89.4 | [ |
Au-CoOx/TiO2 | 300 ≤ λ ≤ 500 | CH3OH CH3OOH | 2.54 mmol g−1 h−1 | 95 | [ |
Cu-W-TiO2 | 350 ≤ λ ≤ 760 | CH3OH CH3OOH | 8.66 mmol g−1 h−1 | 50.2 | [ |
Au0.2Cu0.15- ZnO | Full-spectrum | CH3OOH CH3OH | 8888 μmol g−1 h−1 | ~80 | [ |
Au9Pd1/ZnO | λ ≥ 380 | CH3OH | 6267 µmol g−1 h−1 | 46.7 | [ |
Au1/WO3 | λ ≥ 420 | CH3OH | 589 µmol g−1 h−1 | 75 | [ |
Pd1/2DT | λ ≥ 420 | CH3OH | 43.75 µmol g−1 h−1 | 94 | [ |
Bi-V-HBEA | UV light | CH3OH | 10.7 µmol g−1 h−1 | 6.4 | [ |
PMOF- RuFe(OH) | 400 ≤ λ ≤ 780 | CH3OH | 8.81 ± 0.34 mmol gcat−1 h−1 | ~100 | [ |
Fe@PCN-222 | λ ≥ 420 | CH3OH | 310 µmol g−1 h−1 | 28.84 | [ |
TiO2/TiOF2 | 380 ≤ λ ≤ 760 | CH3OH | 0.7527 µmol g−1 h−1 | — | [ |
CeO2@PdO @FeOx | Full-spectrum | C2H5OH | 728 μmol g−1 h−1 | >85 | [ |
ZnO/Fe2O3 | Full-spectrum | CH3OH | 178.3 μmol−1 gcat−1 | ~100 | [ |
Table 1 Summary of photocatalytic CH4 oxidation to alcohol.
Sample | Wavelength (nm) | Product | Activity | Selectivity (%) | Ref. |
---|---|---|---|---|---|
TiO2 | Full-spectrum | CH3OH | 471 μmol g−1 h−1 | 83 | [ |
Bi2O3 | 380 ≤ λ ≤ 760 | CH3OH | 3771 μmol g−1 h−1 | 65 | [ |
q-BiVO4 | 300 ≤ λ ≤ 600 | CH3OH | 766.7 μmol g−1 h−1 | 92.8 | [ |
WO3 | λ ≥185 | CH3OH | 67.5 μmol g−1 h−1 | 37.4 | [ |
CeO2 | Full-spectrum | C2H5OH | 11.4 µmol gcat−1 h−1 | 91.5 | [ |
fl-CN-530 | 300 ≤ λ ≤ 780 | CH3OH | 12.3 µmol | 50.8 | [ |
Ag/TiO2 | 300 ≤ λ ≤ 500 | CH3OH | 4.8 mmol g−1 h−1 | 80 | [ |
Ag/InGaN | Full-spectrum | CH3OH | 45.5 mmol g−1 h−1 | 93.3 | [ |
Au/ZnO | 300 ≤ λ ≤ 500 | CH3OH | 2.06 mmol g−1 h−1 | 15.67 | [ |
Au0.75/ZnO | Full-spectrum | CH3OH | 1.37 mmol g−1 | 99.1 | [ |
AuNPs/In2O3 | 300 ≤ λ ≤ 1100 | CH3OH | 1.98 mmol g−1 h−1 | 89.4 | [ |
Au-CoOx/TiO2 | 300 ≤ λ ≤ 500 | CH3OH CH3OOH | 2.54 mmol g−1 h−1 | 95 | [ |
Cu-W-TiO2 | 350 ≤ λ ≤ 760 | CH3OH CH3OOH | 8.66 mmol g−1 h−1 | 50.2 | [ |
Au0.2Cu0.15- ZnO | Full-spectrum | CH3OOH CH3OH | 8888 μmol g−1 h−1 | ~80 | [ |
Au9Pd1/ZnO | λ ≥ 380 | CH3OH | 6267 µmol g−1 h−1 | 46.7 | [ |
Au1/WO3 | λ ≥ 420 | CH3OH | 589 µmol g−1 h−1 | 75 | [ |
Pd1/2DT | λ ≥ 420 | CH3OH | 43.75 µmol g−1 h−1 | 94 | [ |
Bi-V-HBEA | UV light | CH3OH | 10.7 µmol g−1 h−1 | 6.4 | [ |
PMOF- RuFe(OH) | 400 ≤ λ ≤ 780 | CH3OH | 8.81 ± 0.34 mmol gcat−1 h−1 | ~100 | [ |
Fe@PCN-222 | λ ≥ 420 | CH3OH | 310 µmol g−1 h−1 | 28.84 | [ |
TiO2/TiOF2 | 380 ≤ λ ≤ 760 | CH3OH | 0.7527 µmol g−1 h−1 | — | [ |
CeO2@PdO @FeOx | Full-spectrum | C2H5OH | 728 μmol g−1 h−1 | >85 | [ |
ZnO/Fe2O3 | Full-spectrum | CH3OH | 178.3 μmol−1 gcat−1 | ~100 | [ |
Fig. 9. (a) Amounts of CH4 oxidation products generated in the EMOR reactor versus reaction time. Reprinted with permission form Ref. [92]. Copyright 2019, American Chemical Society. (b) Product selectivity after 10, 20, 40, 60, 90, and 120 min of CH4 electrochemical conversion by Rh/Al2O3 modified with NH4BF4. (c) Product selectivity after 20, 40, 60, 90, and 120 min of CH4 electrochemical conversion by Cu/Al2O3 modified with NH4BF4. (d) The schematic mechanism for the formation of Brønsted acid sites on the catalyst surface. Reprinted with permission form Ref. [93]. Copyright 2023, Elsevier. (e) A scheme depicting the preparation of a Fe-N-C SAC. (f) The selectivity of oxygenate products at various potentials. Reprinted with permission form Ref. [94]. Copyright 2023, The Royal Society of Chemistry.
Fig. 10. (a) Production yield rates and ethanol selectivity. (b) Reaction energy profiles for CH4 electrocatalytic oxidation to ethanol on the surfaces of WO3 and Ov-WO3 respectively. Reprinted with permission form Ref. [95]. Copyright 2023, Elsevier. (c) The average formation rate and total FE of the generated oxygenates at different current density for 0.5 h. (d) Side views of the optimized configurations of the V2O5 (001) and Ov-V2O5(001) surfaces. Reprinted with permission form Ref. [96]. Copyright 2023, Elsevier. (e) Illustration of the formation of CoyNi1-y-Fe2 PBA and its derived catalysts. (f) After electrolysis for two hours at different electrode potentials, the product yield of CH3OH and 2-propanol. (g) FE of CH3OH and 2-propanol. Reprinted with permission form Ref. [97]. Copyright 2022, The Royal Society of Chemistry.
Fig. 11. (a) Schematic illustration of synthesis procedures of Rh/ZnO nanosheets and electrochemical oxidation of CH4 to C2H5OH. (b) FE of C2H5OH for ZnO and x% Rh/ZnO (x = 0.3, 0.6, 1.0) under different applied potentials. Reprinted with permission form Ref. [99]. Copyright 2021, American Chemical Society. (c) A possible scheme for the catalytic conversion of CH4 into CH3OH on NiO-V2O5/Rh catalyst. Reprinted with permission form Ref. [100]. Copyright 2020, Elsevier. (d) FEs and (e) yields of the anodic products C2H5OH and CH3OH over NiO/Ni catalysts at various applied potentials. (f) Calculated reaction energy profiles for CH4 electrooxidation to form C2H5OH and CH3OH at the NiO (200)/Ni (111) interface. The insets: the transition state (TS) structures for CH3OH* and CH2* formations. Colors: Ni (blue), O (red), and H (white). Reprinted with permission form Ref. [101]. Copyright 2020, Elsevier. (g) Schematic illustration of electrocatalytic CH4 conversion using a NiO@NiHF anode. Reprinted with permission form Ref. [102]. Copyright 2020, Elsevier.
Fig. 12. (a) Energy level diagram for the NiO/ZnO heterojunction. (b) Selectivity for oxygenates with NiO/ZnO nanorod catalysts of various lengths. Reprinted with permission form Ref. [103]. Copyright 2023, Elsevier. (c) Production efficiencies of the products of 1-propanol, 2-propanol, and acetaldehyde at different reaction times. (d) Reaction mechanism analysis. Reprinted with permission form Ref. [104]. Copyright 2017, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (e) Fabrication of the ZrO2 NT/Co3O4 catalyst. (f) Production rate after 3, 6 and 12 h at 1.6 V (vs. RHE). Reprinted with permission form Ref. [105]. Copyright 2021, Elsevier. (g) The corresponding activation energy vs reaction coordinate, (h) the 2p density of states of surface O of the Fermi level, (i) the charge density difference of the ZrO2:Cu2O(111) system. Reprinted with permission form Ref. [107]. Copyright 2021, Elsevier.
Sample | Electrolyte | Potential | Product | Activity | Selectivity (%) | FE (%) | Ref. |
---|---|---|---|---|---|---|---|
Cu/Al2O3 | KHCO3 (0.5 mol L−1) | 2 VPt | C2H5OH | 37.14 μmol h−1 cm−2 | 85 | 90 | [ |
Fe-N-C | KOH (0.1 mol L−1) | 1.6 VRHE | C2H5OH | 4668.3 μmol gcat−1 h−1 | 85 | 68 | [ |
Ov-WO3 | 0.1 mol L−1 Na2SO4 (pH = 2) | 1.2 VRHE | C2H5OH | 125090 μmol gcat−1 h−1 | 99.4 | 50.7 | [ |
Ov-V2O5 | [BMIM]BF4 | 1.15 VAg/Ag+ | CH3OH | 352.5 μmol gcat−1 h−1 | >70 | 61.1 | [ |
CoyNi1-yFe2O4 | Na2SO4 (0.1 mol L−1) | 0.8 VAg/AgCl | CH3OH | 1925.4 μmol gcat−1 h−1 | 82.8 | 9.03 | [ |
LaCo0.5Fe0.5O3 | [BMIM]BF4 | 0.8 VAg/AgCl | CH3OH | 39.3 μmol gcat−1 h−1 | — | 92.4 | [ |
Rh/ZnO | KOH (0.1 mol L−1) | 2.2 VRHE | C2H5OH | 789 μmol gcat−1 h−1 | 85 | 22.5 | [ |
NiO-V2O5/Rh | — | — | CH3OH | 0.65 mol g−1 h−1 | 97.9 | 91 | [ |
NiO/Ni | NaOH (0.1 mol L−1) | 1.4 VRHE | C2H5OH | 25 μmol gNiO−1 h−1 | 87 | 89 | [ |
NiO@NiHF | NaOH (0.1 mol L−1) | 1.46 VRHE | C2H5OH | — | — | 85 | [ |
NiO/ZnO | Na2CO3 (0.5 mol L−1) | 1.5 VSCE | C2H5OH | 1084.2 μmol gNiO−1 h−1 | 81 | — | [ |
Co3O4/ZrO2 | Na2CO3 (0.5 mol L−1) | 2 VRHE | C3H7OH | 3255.7 μmol g−1 h−1 3205.5μmol g−1 h−1 | >60 | — | [ |
ZrO2 NT/Co3O4 | Na2CO3 (0.5 mol L−1) | 1.6 VRHE | C3H7OH | 2416 μmol gcat−1 h−1 | >92 | — | [ |
ZrO2:NiCo2O4 | Na2CO3 (0.5 mol L−1) | 2 VPt | C3H7OH | 2500 μmol gcat−1 h−1 | >90 | — | [ |
Table 2 Summary of electrocatalytic CH4 oxidation to liquid products.
Sample | Electrolyte | Potential | Product | Activity | Selectivity (%) | FE (%) | Ref. |
---|---|---|---|---|---|---|---|
Cu/Al2O3 | KHCO3 (0.5 mol L−1) | 2 VPt | C2H5OH | 37.14 μmol h−1 cm−2 | 85 | 90 | [ |
Fe-N-C | KOH (0.1 mol L−1) | 1.6 VRHE | C2H5OH | 4668.3 μmol gcat−1 h−1 | 85 | 68 | [ |
Ov-WO3 | 0.1 mol L−1 Na2SO4 (pH = 2) | 1.2 VRHE | C2H5OH | 125090 μmol gcat−1 h−1 | 99.4 | 50.7 | [ |
Ov-V2O5 | [BMIM]BF4 | 1.15 VAg/Ag+ | CH3OH | 352.5 μmol gcat−1 h−1 | >70 | 61.1 | [ |
CoyNi1-yFe2O4 | Na2SO4 (0.1 mol L−1) | 0.8 VAg/AgCl | CH3OH | 1925.4 μmol gcat−1 h−1 | 82.8 | 9.03 | [ |
LaCo0.5Fe0.5O3 | [BMIM]BF4 | 0.8 VAg/AgCl | CH3OH | 39.3 μmol gcat−1 h−1 | — | 92.4 | [ |
Rh/ZnO | KOH (0.1 mol L−1) | 2.2 VRHE | C2H5OH | 789 μmol gcat−1 h−1 | 85 | 22.5 | [ |
NiO-V2O5/Rh | — | — | CH3OH | 0.65 mol g−1 h−1 | 97.9 | 91 | [ |
NiO/Ni | NaOH (0.1 mol L−1) | 1.4 VRHE | C2H5OH | 25 μmol gNiO−1 h−1 | 87 | 89 | [ |
NiO@NiHF | NaOH (0.1 mol L−1) | 1.46 VRHE | C2H5OH | — | — | 85 | [ |
NiO/ZnO | Na2CO3 (0.5 mol L−1) | 1.5 VSCE | C2H5OH | 1084.2 μmol gNiO−1 h−1 | 81 | — | [ |
Co3O4/ZrO2 | Na2CO3 (0.5 mol L−1) | 2 VRHE | C3H7OH | 3255.7 μmol g−1 h−1 3205.5μmol g−1 h−1 | >60 | — | [ |
ZrO2 NT/Co3O4 | Na2CO3 (0.5 mol L−1) | 1.6 VRHE | C3H7OH | 2416 μmol gcat−1 h−1 | >92 | — | [ |
ZrO2:NiCo2O4 | Na2CO3 (0.5 mol L−1) | 2 VPt | C3H7OH | 2500 μmol gcat−1 h−1 | >90 | — | [ |
Fig. 13. (a) The atomic structures of •OH adsorption on twinning W atoms of (010) facet, (100) facet and (001) facet. (b) Production rate of EG produced in photoelectrocatalytic CH4 conversion on WO3 photoanodes with different (010) facet ratios at a range of potentials under 100 mWcm-2 illumination. (c) Schematic illustration of the proposed reaction mechanism for photoelectrocatalytic CH4 conversion into EG. Reprinted with permission form Ref. [108]. Copyright 2021, Wiley-VCH GmbH. (d) Production yields of S200/30-15 at different potentials (e) Reaction energy of Ov-activated CH3OH to CH2OH and (f) CH4 to CH3 on the WO3 + Ov (100) slab, respectively. Reprinted with permission form Ref. [109]. Copyright 2023, Elsevier. (g) FE for bare (blank) and reduced (shaded) WO3 NTs electrodes. (h) Free energy diagram of water decomposition on the WO3 (100) surface at pH = 2 and 0.7 V vs. RHE. (i) Schematic depicting the overall band diagrams of bare and reduced WO3 NTs. Reprinted with permission form Ref. [110]. Copyright 2023, American Chemical Society.
Fig. 14. (a) Stepwise synthetic procedure and structure of ZnO/graphene/PANI composite. (b) Yields of CH3OH in the photoelectrocatalytic oxidation of CH4 with catalyst of ZnO NWAs, ZnO/graphene, ZnO/PANI, and ZnO/graphene/PANI composites under simulated sunlight illumination. Reprinted with permission form Ref. [112]. Copyright 2019, Chinese Physical Society. (c) Total production of liquid chemicals from partial oxidation of CH4 of different electrodes consisting of as-synthesized SnO2-rutile, commercial TiO2-anatase, and as-synthesized TiO2:SnO2 heterostructure induced by photocatalysis (P), electrocatalysis (E), and photoelectrocatalysis (PE) sources. Reprinted with permission form Ref. [113]. Copyright 2023, Elsevier.
Sample | Wavelength (nm) | Potential | Product | Activity | Selectivity (%) | Ref. |
---|---|---|---|---|---|---|
WO3 | simulated solar | 1.3 VRHE | (CH2OH)2 | 0.47 mmol cm−2 h−1 | 66 | [ |
WO3 NSs | — | 0.9 VRHE | C2H5OH | 98900 μmol gcat−1 h−1 | 92 | [ |
WO3 NTs | 300 ≤ λ ≤ 800 | 0.7 VRHE | CH3OH | 0.174 μmol cm−2 h−1 | 69.4 | [ |
ZnO/Au NWAs | 400 ≤ λ ≤ 1100 | 1.0 VAg/AgCl | CH3OH | 1.688 μmol mL−1 h−1 | — | [ |
ZnO/graphene/PANI | 400 ≤ λ ≤ 1100 | 1.0 VAg/AgCl | CH3OH | 0.49 μmol mL−1 h−1 | — | [ |
TiO2:SnO2 | — | 1.3 VAg/AgCl | CH3OH | 30 μmol cm−2 h−1 | — | [ |
Table 3 Summary of photoelectrocatalyst for CH4 oxidation to alcohol products.
Sample | Wavelength (nm) | Potential | Product | Activity | Selectivity (%) | Ref. |
---|---|---|---|---|---|---|
WO3 | simulated solar | 1.3 VRHE | (CH2OH)2 | 0.47 mmol cm−2 h−1 | 66 | [ |
WO3 NSs | — | 0.9 VRHE | C2H5OH | 98900 μmol gcat−1 h−1 | 92 | [ |
WO3 NTs | 300 ≤ λ ≤ 800 | 0.7 VRHE | CH3OH | 0.174 μmol cm−2 h−1 | 69.4 | [ |
ZnO/Au NWAs | 400 ≤ λ ≤ 1100 | 1.0 VAg/AgCl | CH3OH | 1.688 μmol mL−1 h−1 | — | [ |
ZnO/graphene/PANI | 400 ≤ λ ≤ 1100 | 1.0 VAg/AgCl | CH3OH | 0.49 μmol mL−1 h−1 | — | [ |
TiO2:SnO2 | — | 1.3 VAg/AgCl | CH3OH | 30 μmol cm−2 h−1 | — | [ |
|
[1] | 吴永辉, 鄢雨晴, 邓奕翔, 黄微雅, 杨凯, 卢康强. 合理构建S型CdS量子点/In2O3空心纳米管异质结以增强光催化产氢[J]. 催化学报, 2025, 70(3): 333-340. |
[2] | Farideh Kolahdouzan, Nahal Goodarzi, Mahboobeh Setayeshmehr, Dorsa Sadat Mousavi, Alireza Z. Moshfegh. 一维纳米结构在光催化CO2还原中的应用[J]. 催化学报, 2025, 70(3): 230-259. |
[3] | Oleksandr Savateev, 庄镜儒, 万思杰, 宋春山, 曹少文, Tang Junwang. 光催化分解水与有机合成制氢: 大评述[J]. 催化学报, 2025, 70(3): 44-114. |
[4] | 成雪峰, 刘青, 孙启孟, 董慧龙, 陈冬赟, 郑莹, 徐庆锋, 路建美. 相邻Ni位点近邻电子效应增强Cu位点加氢和脱氧匹配度促进硝酸盐电还原产氨[J]. 催化学报, 2025, 70(3): 285-298. |
[5] | 赵东林, 周科宇, 詹丽, 樊光银, 龙艳, 宋术岩. Er掺杂调控CoP活性位点的电子结构促进亚硝酸盐电还原合成氨[J]. 催化学报, 2025, 70(3): 299-310. |
[6] | 张丽娜, 刘国威, 邓欣妍, 李秋叶, 杨建军. 原子分散的Ba位点作为电子促进剂增强Cu助催化剂的光还原CO2性能[J]. 催化学报, 2025, 70(3): 341-352. |
[7] | 董红军, 屈春宏, 李春梅, 胡博, 李鑫, 梁桂杰, 江吉周. 基于共价有机框架的光催化剂的研究进展: 原理、设计和应用[J]. 催化学报, 2025, 70(3): 142-206. |
[8] | 许明阳, 李真真, 沈荣晨, 张欣, 张治红, 张鹏, 李鑫. 构建卟啉基共价有机框架与Nb2C MXene的S型异质结并应用于光催化过氧化氢生产[J]. 催化学报, 2025, 70(3): 431-443. |
[9] | 王雪娇, 戚克振, 许凯强. 通过电子结构调控增强Au助催化剂对光催化过氧化氢的生产[J]. 催化学报, 2025, 70(3): 1-4. |
[10] | 肖建洲, 赵致灏, 张楠楠, 车宏途, 乔秀, 张光颖, 初小宇, 王雅, 董鸿, 张凤鸣. 共价有机框架中的连接工程用于在水和空气中光催化全合成H2O2[J]. 催化学报, 2025, 69(2): 219-229. |
[11] | 刘京, 马贤迪, 卢政汉, 申东元, 赵阿雅, 韩晸宇, 龙剑平, 周震, 焦梦改, 李国承, 赵恩爱. 靶向构筑高性能单原子铂基氢析出反应电催化剂[J]. 催化学报, 2025, 69(2): 259-270. |
[12] | 詹晓宁, 金昱丞, 韩彬, 周子文, 陈宝通, 丁旭, 李福顺, 索植孺, 姜蓉, 齐冬冬, 王康, 姜建壮. 二维酞菁共价有机框架材料用于红外光光催化[J]. 催化学报, 2025, 69(2): 271-281. |
[13] | 夏兵全, 刘高雄, 樊坤, 陈润东, 刘欣, 李来全. 基于双氧还原中心的共价三嗪框架构建的1D/2D S型异质结促进过氧化氢光合作用[J]. 催化学报, 2025, 69(2): 315-326. |
[14] | 蒋元元, 张妍, 刘梦梦, 刘璐璐, 陈红, 叶盛. 双电荷传输媒介促进赤铁矿光阳极的电荷转移实现高效光电催化水分解[J]. 催化学报, 2025, 69(2): 75-83. |
[15] | 胡婷婷, 冯盼盼, 褚宏旗, 高腾, 刘福胜, 周卫. 缺陷型介孔MIL-125(Ti)@BiOCl S 型异质结中内建电场的调控机制及光催化性能研究[J]. 催化学报, 2025, 69(2): 123-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||