催化学报 ›› 2025, Vol. 70: 230-259.DOI: 10.1016/S1872-2067(24)60214-7
Farideh Kolahdouzana, Nahal Goodarzia, Mahboobeh Setayeshmehrb, Dorsa Sadat Mousavib, Alireza Z. Moshfegha,b,*()
收稿日期:
2024-09-26
接受日期:
2024-11-11
出版日期:
2025-03-18
发布日期:
2025-03-20
通讯作者:
* 电子信箱: moshfegh@sharif.edu (A. Z. Moshfegh).
基金资助:
Farideh Kolahdouzana, Nahal Goodarzia, Mahboobeh Setayeshmehrb, Dorsa Sadat Mousavib, Alireza Z. Moshfegha,b,*()
Received:
2024-09-26
Accepted:
2024-11-11
Online:
2025-03-18
Published:
2025-03-20
Contact:
* E-mail: About author:
Professor Alireza Z. Moshfegh received his PhD in Physics at University of Houston, Texas (USA) in 1990. After two years of Post-Doctoral research activity in Texas Center for Superconductivity, he joined as an assistant professor in Department of Physics at the Sharif University of Technology (SUT) in Tehran, Iran. He is the founder of Vacuum Society of Iran (VSI) and acted as its president (2004‒2010) as well as co-founder of Iranian Society of Surface Science &Technology (ISSST). He is selected as the first ranked physics researcher in Iran in 2011. He established a large multidisciplinary research group called NEST (Nano-Energy-Surface-Thin films) (摘要:
由于CO2是最重要的温室气体, 空气污染和全球变暖引起了人们对CO2转化研究的极大兴趣. 光催化CO2还原反应(CRR)是一种关键的碳捕获和利用技术, 旨在将CO2转化为燃料和化学品等有价值的产品. 然而, 用于CRR的许多半导体光催化剂面临着光吸收低、载流子分离差和电子-空穴复合等挑战, 导致反应收率低. 这些问题的一些重要解决方案包括减小纳米结构尺寸、助剂装饰以及金属/非金属掺杂和构造异质结结构. 一维(1D)纳米结构, 如纳米棒、纳米管、纳米线和纳米纤维, 由于其优异的光吸收能力、高电子-空穴分离效率、高长径比和丰富的暴露活性表面位点, 是CO2还原过程的突出光催化剂. 本文首先介绍了CO2还原机理, 随后讨论了基于生长环境的一维纳米材料生长方法及应用在光催化CRR中的类型. 综述了应用于CRR中1D基光催化剂的两种主要改进策略, 包括表面改性和构造异质结结构. 最后提出了CRR在未来应用面临的一些重要挑战及其解决方案.
Farideh Kolahdouzan, Nahal Goodarzi, Mahboobeh Setayeshmehr, Dorsa Sadat Mousavi, Alireza Z. Moshfegh. 一维纳米结构在光催化CO2还原中的应用[J]. 催化学报, 2025, 70: 230-259.
Farideh Kolahdouzan, Nahal Goodarzi, Mahboobeh Setayeshmehr, Dorsa Sadat Mousavi, Alireza Z. Moshfegh. 1D-based nanostructures in photocatalytic CO2 reduction[J]. Chinese Journal of Catalysis, 2025, 70: 230-259.
Fig. 1. (a) Changes in CO2 levels during the Earth’s last three glacial cycles, as captured by air bubbles trapped in ice sheets and glaciers. Reproduced from Ref. [7]. (b) The graph on total increase in energy-related CO2 emissions during 1900?2023 obtained from IEA report 2023 [8].
Fig. 2. (a) The trend of published articles on photocatalytic CO2 reduction/conversion between 2010 to July 2024 (received from Scopus citation database) using keywords in ("photocatal*") AND ("CO2 reduction") OR ("CO2 conversion"). (b) The trend of published articles on photocatalytic CO2 reduction/conversion based on 1D nanostructures between 2010 to July 2024 (retrieved from Scopus citation database) using keywords in ("photocatal*") AND ("CO2 reduction") OR ("CO2 conversion") AND ("one-dimensional") OR ("1D") OR ("nanorod") OR ("nanotube") OR ("nanowire") OR ("nanofiber").
Fig. 9. Optical band gap energy of 1D TiO2 nanostructures and their precursors. Inset: UV-vis DRS spectra in %R. Reproduced with permission from Ref. [90].
Fig. 11. (a) Synthesis scheme of CCNBs. (b,c) SEM images of CCNBs. (d) Time-dependent CO evolution of bulk g-C3N4, nanosized g-C3N4 and CCNBs samples. (e) CO and CH4 production rates under light illumination for 5 h. Reproduced with permission from Ref. [106].
Fig. 12. (a) Schematic of the preparation of the TC/CCN-FD photocatalyst. SEM images of CCN (b), Ti3C2Tx (c), and TC/CCN-FD (d). (e) CO and CH4 photocatalytic production from different samples under full spectrum irradiation. Reproduced with permission from Ref. [68].
Fig. 13. (a) Schematic drawing for the synthetic procedure of porous tubular CNA samples. (b,c) SEM images of porous tubular structure CNA2.5. (d) UV-Vis DRS and (e) the corresponding energy band values using Tauc plot. (f) Band position of the sample. (g) CO and CH4 yields of samples under visible light irradiation for 6 h. Reproduced with permission from Ref. [110].
Fig. 14. (a) XRD patterns of TNTs and Cu2O modified TNTs. SEM images of the prepared samples: top view of TNTs (b) and TC5 (c). (d) CH4 production rate in the presence of water vapor over the synthesized samples, under visible light irradiation. Reproduced with permission from Ref. [69].
Fig. 15. (a) Crystal structure of FeVO4. (b) XRD patterns of FeVO4 photocatalyst synthesized at several pH values. SEM image (c) and TEM image (d) of FeVO4 nanowires. (e) Photocatalytic CO production quantities as a function of irradiation times. (f) Stability testing for catalytic CO generation over the FeVO4 nanowires. (g) Product selectivity of photocatalytic CO2 reduction to CO and CH4 over different FeVO4 samples. (h) XRD analysis of the FeVO4 nanowires after the stability test. Reproduced with permission from Ref. [115].
Fig. 16. (a) Schematic of the synthesis process of La1?xSrxCo1?δFeδO3 nanofibers. (b,c) TEM images of La0.8Sr0.2CoO3. (d) The photoreduction performance of CO2 with La1?xSrxCoO3 nanofibers. (e) Stability test of the La0.8Sr0.2Co0.7Fe0.3O3 nanofibers. (f) Corresponding the XRD patterns of the La0.8Sr0.2Co0.7Fe0.3O3 nanofibers before and after CRR. Reproduced with permission from Ref. [120].
Fig. 17. (a) Schematic of the formation of OV-rich ultrafine Bi5O7Br nanowires. (b) TEM image of OV-poor Bi5O7Br nanowires. (c) EPR spectra of the OV-rich, OV-poor Bi5O7Br nanowires and bulk Bi5O7Br. (d) CO production yield as a function of irradiation times over the Bi5O7Br photocatalysts. Reproduced with permission from Ref. [134].
Fig. 18. (a) preparation processes of x% Cu-SrTiO3 nanofibers photocatalysts. SEM images of 4%Cu-ST (b), 6%Cu-ST (c), 8%Cu-ST (d), and 10%Cu-ST (e) nanofibers. (f) The rate of photocatalytic CO2 reduction products for different Cu concentrations in the x% Cu-SrTiO3 nanofiber photocatalysts (x = 4, 6, 8, and 10). (g) Cycle stability test of the 8%Cu-ST. Reproduced with permission from Ref. [137].
Fig. 19. (a) Synthesis of A-ZrO2 and PtSA loading process. (b) SEM image of PtSA/ZrO2 with a magnified inset. (c) Photocatalytic CO2 reduction products on A-ZrO2, C-ZrO2, and PtSA/ZrO2 under visible light for 2. (d) Comparison of CO and CH4 selectivity of the A-ZrO2, C-ZrO2, and PtSA/ZrO2. (e) Schematic diagram of photoelectron transfer pathways in various systems. (f) Schematic diagram of the Pt SA/ZrO2 system for photocatalytic CO2 conversion under visible light irradiation. Reproduced with permission from Ref. [138].
Fig. 20. (a) Schematic diagram showing preparation of the Ag NP/GaN@β Ga2O3 NW heterojunctions. (b) SEM image of Ag NPs distribution on the surface of the GaN@β-Ga2O3 NWs. (c,d) Evaluation of the photocatalytic activity of various photocatalysts for CO2 reduction under illumination. Reprinted with permission from Ref. [141]. Copyright 2024, American Chemical Society.
Fig. 21. Cross-sectional view SEM images of photocatalysts: (a) bare TiO2 nanorod, (b) C2 CdS-Cu2+/TiO2. (c) Impact of SILAR cycles on ethanol yield. (d) Effect of CO2 flow rate on ethanol yield at temperature of 60 °C. (e) Influence of reaction temperature on ethanol yield at flow rate of 4 mL/min. Reproduced with permission from Ref. [143].
1D nano- structures | Photocatalyst | Synthesis method | Surface modification method | Light source/intensity | Main products/yield | Ref. |
---|---|---|---|---|---|---|
Nanofiber | x%Cu-SrTiO3 | electrospinning | metal loading | 300 W Xe lamp | CH3OH/8.08 μmol g−1 h−1 | [ |
carbon nanofibers@TiO2 (50 mg) | hydrothermal | fabrication of nanocomposite | 350W Xe arc lamp | CH4/13.52 μmol g−1 h−1 | [ | |
Nanowire | Bi5O7Br (20 mg) | solvothermal | defect engineering | 300 W Xe lamp with an AM 1.5G filter | CO/18.04 μmol g−1 h−1 | [ |
Pt SA/ZrO2 (20 mg) | ultrasonication and calcination | co-catalyst decoration | 300 W Xe lamp | CO/16.61 mmol g−1 h−1 | [ | |
Cu NWs@ZIF-8 (5 mg) | hydrothermal | fabrication of nanocomposite | 300 W Xe lamp with a 420 nm cutoff filter | CO/176.2 μmol g−1 h−1 | [ | |
Ag-doped CuV2O6 (10mg) | hydrothermal | metal doping | 300 W Xe lamp | CO/6.95 μmol g−1 h−1 | [ | |
Co(OH)2/CdS (40 mg) | solvothermal | co-catalyst decoration | 300 W Xe lamp | CO/8.11 μmol g−1 h−1 | [ | |
Au/SiNW | electroless plating method | co-catalyst decoration | solar simulator PEC-L11 | CO/~32 μmol h−1 | [ | |
Nanotube | Au-TNTs | electrochemical deposition | metal loading | visible light, Xe lamp (500 W) | CH4/14.67% | [ |
nitrogen-rich g-C3N4 | hydrothermal | defect engineering | 300 W Xe lamp | CO/103.6 μmol g−1 h−1 | [ | |
CNAX (5 mg) | calcination | defect engineering | 300 W Xe lamp | CO/12.58 μmol g−1 h−1 | [ | |
CdS-SV@Co@NCNT (5 mg) | solvothermal | defect engineering, co-catalyst decoration, nonmetal doping | 300 W Xe lamp | CO/263.3 μmol g−1 h−1 CH4/13.2 μmol g−1 h−1 | [ | |
Cu/g-C3N4(10 mg) | hydrothermal and calcination | metal doping | 50 W LED | CO/11.55 μmol g−1 CH4/4.72 μmol g−1 | [ | |
Nanorod | CdS-Cu2+/TiO2 | hydrothermal | surface sensitization metal doping | 300 W Xe lamp | C2H5OH/ 109.12 μmol g−1 h−1 | [ |
CdO/CdS (5 mg) | modified solvothermal | fabrication of nanocomposite | 455 nm LEDs | CO/6.3 mmol g−1 h−1 | [ | |
Cu modified g-C3N4 (50 mg) | chemical vapor co-deposition | metal loading | 300 W Xe lamp | CO/49.57 μmol g−1 CH4/3.64 μmol g−1 | [ |
Table 1 Summary of 1D structures used in photocatalytic CO2 reduction into valuable products.
1D nano- structures | Photocatalyst | Synthesis method | Surface modification method | Light source/intensity | Main products/yield | Ref. |
---|---|---|---|---|---|---|
Nanofiber | x%Cu-SrTiO3 | electrospinning | metal loading | 300 W Xe lamp | CH3OH/8.08 μmol g−1 h−1 | [ |
carbon nanofibers@TiO2 (50 mg) | hydrothermal | fabrication of nanocomposite | 350W Xe arc lamp | CH4/13.52 μmol g−1 h−1 | [ | |
Nanowire | Bi5O7Br (20 mg) | solvothermal | defect engineering | 300 W Xe lamp with an AM 1.5G filter | CO/18.04 μmol g−1 h−1 | [ |
Pt SA/ZrO2 (20 mg) | ultrasonication and calcination | co-catalyst decoration | 300 W Xe lamp | CO/16.61 mmol g−1 h−1 | [ | |
Cu NWs@ZIF-8 (5 mg) | hydrothermal | fabrication of nanocomposite | 300 W Xe lamp with a 420 nm cutoff filter | CO/176.2 μmol g−1 h−1 | [ | |
Ag-doped CuV2O6 (10mg) | hydrothermal | metal doping | 300 W Xe lamp | CO/6.95 μmol g−1 h−1 | [ | |
Co(OH)2/CdS (40 mg) | solvothermal | co-catalyst decoration | 300 W Xe lamp | CO/8.11 μmol g−1 h−1 | [ | |
Au/SiNW | electroless plating method | co-catalyst decoration | solar simulator PEC-L11 | CO/~32 μmol h−1 | [ | |
Nanotube | Au-TNTs | electrochemical deposition | metal loading | visible light, Xe lamp (500 W) | CH4/14.67% | [ |
nitrogen-rich g-C3N4 | hydrothermal | defect engineering | 300 W Xe lamp | CO/103.6 μmol g−1 h−1 | [ | |
CNAX (5 mg) | calcination | defect engineering | 300 W Xe lamp | CO/12.58 μmol g−1 h−1 | [ | |
CdS-SV@Co@NCNT (5 mg) | solvothermal | defect engineering, co-catalyst decoration, nonmetal doping | 300 W Xe lamp | CO/263.3 μmol g−1 h−1 CH4/13.2 μmol g−1 h−1 | [ | |
Cu/g-C3N4(10 mg) | hydrothermal and calcination | metal doping | 50 W LED | CO/11.55 μmol g−1 CH4/4.72 μmol g−1 | [ | |
Nanorod | CdS-Cu2+/TiO2 | hydrothermal | surface sensitization metal doping | 300 W Xe lamp | C2H5OH/ 109.12 μmol g−1 h−1 | [ |
CdO/CdS (5 mg) | modified solvothermal | fabrication of nanocomposite | 455 nm LEDs | CO/6.3 mmol g−1 h−1 | [ | |
Cu modified g-C3N4 (50 mg) | chemical vapor co-deposition | metal loading | 300 W Xe lamp | CO/49.57 μmol g−1 CH4/3.64 μmol g−1 | [ |
Fig. 23. (a) CO2 photoreduction performance of the COF-5/CoAl-LDH photocatalyst. (b) CO and CH4 selectivity of the photocatalyst. (c) Illustration of the carrier transfer mechanism for CO2 reduction over the photocatalyst. (d) TRPL spectrum of the photocatalysts. Reproduced with permission from Ref. [165].
Fig. 24. (a) Preparation steps of the STO@CCN photocatalyst. (b) The gas-solid reaction for introducing cyano defects in the g-C3N4. SEM (c) and TEM (d) images of the STO@CCN-2 nanotubes. (e) Schematic illustration of the carrier migration directions in type-II STO@CCN nanotubes. (f) The photocatalytic solar fuel generation rates of the different photocatalysts. Reproduced with permission from Ref. [166].
Fig. 25. Schematic illustration of charge transfer for three Z-scheme heterostructures: (a) traditional Z-scheme, (b) all-solid-state Z-scheme, (c) direct Z-scheme.
Fig. 26. TEM images (a) and charge carrier transition mechanism (b) in all-solid-state ZnFe2O4/Ag/TiO2 nanorods. (c) Photoluminescence spectra (PL) of TiO2 NRs, ZnFe2O4/TiO2 NRs and ZnFe2O4/Ag/TiO2 NRs photocatalysts. (d) Photocatalytic performance of ZnFe2O4/Ag/TiO2 nanoparticles vs. ZnFe2O4/Ag/TiO2 nanorods. (e) Stability analysis of the photocatalyst. (f) Raman analysis of the fresh and reused photocatalyst. Reproduced with permission from Ref. [187].
Fig. 27. (a) The schematic illustration for the synthesis of BPQDs-WO3. (b) The charge transfer mechanism of CO2 reduction over the BPQDs-WO3. (c,d) Photocatalytic performance of the BPQD-WO3 heterostructures for CO production and C2H4 evolution as a function of light illumination times, respectively. Reproduced with permission from Ref. [193].
Fig. 28. Schematic illustration of charge transfer process in S-scheme heterostructures: before contact (a), after contact (b), and under light irradiation (c).
Fig. 30. (a) Schematic illustration of the CTO/CN synthesis. (b,c) Spectra of DMPO-?O2- and DMPO-?OH for pure g-C3N4, CoTiO3, and 2% CTO/CN. (d) The mechanism of carrier migration in the CTO/CN heterojunction. (e) The yields of CO and CH4 production over the as-prepared photocatalysts Reproduced with permission from Ref. [207].
Fig. 31. High-resolution XPS spectra of C 1s (a), N 1s (b), Co 2p (c), Ti 2p (d), and O 1s (e). (f) Gibbs free energy profiles for the photoreduction of CO2 to CO/CH4 using the CTO/CN. Reproduced with permission from Ref. [207].
Fig. 32. (a) Schematic illustration of preparation procedure of the hierarchical In2O3@Co2VO4. (b) FESEM image of the In2O3@Co2VO4 photocatalyst. The yield of H2 (c), CO (d), and CH4 (e) generation over the photocatalysts under UV-vis light illumination. (f) CH4 selectivity of the photocatalysts. Reproduced with permission from Ref. [208].
Fig. 33. High-resolution XPS spectra of In 3d (a), Co 2p (b), and O 1s (c) of In2O3, Co2VO4, and IC20. (d) Schematic illustration of the charge carrier transfer and the IEF formation between In2O3 and Co2VO4 after contact. Reproduced with permission from Ref. [208].
Fig. 34. (a) DRIFTS spectra of CO2 photoreduction over the optimized In2O3@Co2VO4. (b) Gibbs free energy calculations of CO2 photoreduction over the Co2VO4 (001) slabs. The purple, pink, green, orange, and yellow spheres represent Co, V, O, C, and H atoms, respectively. Reproduced with permission from Ref. [208].
Heterojunctions | Photocatalyst | Synthesis method | Light source /intensity | Main product /yield | Ref. |
---|---|---|---|---|---|
Type II | hollow tubular ZnO@ZnS (2 mg) | hydrothermal | 300 W Xe lamp | CO/24.09 μmol g−1 h−1 | [ |
2D/1D nested hollow porous ZnIn2S4/g-C3N4 nanotube (50 mg) | hydrothermal and calcination | 300 W Xe lamp, | CO/79.96 μmol g−1 | [ | |
λ > 420 nm | CH4/17.33 μmol g−1 | ||||
halloysite Nanotubes HNTs@g-C3N4/Au/CdS (HCAC) (20 mg) | annealing and successive ionic layer adsorption and reaction (SILAR) | UV-Vis light irradiation | CO/55.4 μmol g−1 | [ | |
CH4/8.6 μmol g−1 | |||||
ZnSe nanorods-CsSnCl3 perovskite (5 mg) | hot-injection method | 300 W Xe lamp (SolarEdge 700, 100 mW cm−2, 25 °C ) | CO/53.96 μmol g−1 h−1 | [ | |
CH4/2.55 μmol g−1 h−1 | |||||
rod like MOF-derived | solvothermal | 50 W Mercury lamp (λ = 380 nm; 130 mW cm−2) | CO/95.8 μmol g−1 | [ | |
NPC-MoS2@Bi4O5Br2 (20 mg) | CH4/159.9 μmol g−1 | ||||
2D/1D BiOBr/CdS nanorods (10 mg) | hydrothermal | 300 W Xe lamp with a 420 nm cut-off optical filter | CO/13.6 μmol g−1 | [ | |
Z-scheme | 1D/0D hollow Bi2S3 nanotubes/CdxZn1−xS nanospheres (30 mg) | in situ electrostatic | 300 W Xe lamp | CO/32.11 μmol g−1 h−1 | [ |
self-assembly method | H2/33.10 μmol g−1h−1 | ||||
(1D/2D) CoTe nanorods/PCN (25 mg) | self-assembly | 300 W Xe lamp | CO/32.84 μmol g-1 | [ | |
nanorod-shaped CdS/Fe2O3 (0.1 g) | hydrothermal | UV and visible lamp (100 W cm−2 and 9 W cm−2) | CH4/16.5 μmol g−1 | [ | |
BiVO4/Carbon-Coated Cu2O nanowire | electrochemical anodization and carbonization followed by the SILAR method | Visible light (>420 nm) | CO/3.01 μmol g−1 h−1 | [ | |
100 mW cm−2 | |||||
Ni-CoTCPP/TiO2 nanotube | hydrothermal and anodization | 500 W Xe | CH4/52.27 μmol cm-2 h−1 | [ | |
Cu2O QDs/TiO2 nanotubes (50 mg) | hydrothermal | 300 W Xe lamp | CH4/97% | [ | |
ZnO-Au-Titanium oxide nanotubes (0.25 g) | hydrothermal | UV light reactor equipped with eight (8w) light tubes (λ = 254 nm) | CH3OH/ | [ | |
7777.1 μmol g− 1 h− 1 | |||||
P-O linked g-C3N4/TiO2-nanotubes (0.5 g) | solid sublimation and conversion followed by an impregnation method | Xe lamp | Acetic/46.9 ± 0.76 mg L−1 h−1 | [ | |
Methanol/38.2 ± 0.69 mg L−1 h−1 | |||||
Formic acids/28.8 ± 0.64 mg L−1 h−1 | |||||
FeOOH nanorod/PCN (25 mg) | hydrothermal | 300 W Xe lamp with AM1.5 filter | CH4 />85% | [ | |
Zn2GeO4 nanorod/ZIF-67 (150 mg) | deposition of Zn2GeO4 nanorod on highly crystalline ZIF-67 | 300 W Xe lamp | CH3OH/5.15 μmol g−1 h−1 | [ | |
C2H5OH/4.08 μmol g−1 h−1 | |||||
S-scheme | In2S3/Nb2O5 hybrid nanofiber (50 mg) | electrospinning followed by air annealing and solvothermal | simulated sunlight | CO/60.36 μmol g−1 h−1 | [ |
(full spectrum) | |||||
Fe-TiO2‒x/TiO2 nanorod (3 mg) | surface modification approach | 300 W Xe lamp | CO/122 µmol g−1 h−1 | [ | |
CH4/22 µmol g−1 h−1 | |||||
1D/2D g-C3N4 nanorods/CoAlLa-LDH | hydrothermal and calcination | 35 W Xe lamp | CO/44.62 µmol g−1 h−1 | [ | |
CH4/36.66 µmol g−1 h−1 | |||||
W18O49 ultrathin nanowires /CsPbBr3 | hot-injection | 300 W Xe lamp with a power of 100 mW cm−2 with a 420 nm cut-off filter | CO/143 µmol g−1 h−1 | [ | |
(10 mg) | |||||
C-In2O3 nanorods/W18O49 nanowire | hydrothermal | 300 W Xe lamp | CO/135.82 µmol g−1 h−1 | [ | |
(50 mg) | |||||
Ag/AgVO3/TiO2-nanowires (0.25 g) | hydrothermal | UV light | CH3OH/9561.3 μmol g−1 h−1 | [ | |
carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes (5 mg) | hydrothermal | 300 W Xe lamp, AM1.5G | CO/7.121 μmol g−1 h−1 | [ | |
CH4/9.769 μmol g−1 h−1 | |||||
hierarchical Bi2MoO6@In2S3 heterostructured nanotubes (30 mg) | solvothermal | 300 W Xe lamp | CO/28.54 μmol g−1 h−1 | [ | |
(≥ 420 nm) | |||||
In2O3/Nb2O5 hybrid nanofibers (10 mg) | one-step electrospinning | 300 W Xe arc lamp | CO/109.6 mmol g−1 h-1 | [ | |
NiS@Ta2O5 hybrid nanofibers | electrospinning and Ion exchange method | 500 W Xe lamp | CO/43.27 μmol g−1 h−1 | [ | |
CH4/6.56 μmol g−1 h−1 | |||||
SnO2 nanofibers/Cs3Bi2Br9 (30 mg) | electrostatically self-assembling | 300 W Xe lamp | CH4/70% | [ | |
MCS(Mn0.2Cd0.8S)-wrapped MOF-BiOBr nanorods (50 mg) | hydrothermal | 300 W Xe lamp | CO/60.59 μmol g−1 h−1 | [ | |
(λ > 420 nm) | |||||
CoTiO3/Cd9.51Zn0.49S10 nanowire (8 mg) | hydrothermal | Xenon lamp (equipped with 420 nm cut off filter) | CO/11 mmol g−1 h−1 | [ | |
In2O3/Bi19Br3S27 rod-like (50 mg) | calcination and solvothermal | 300 W Xe lamp (λ > 420 nm) | CO/28.36 μmol g−1 h−1 | [ |
Table 2 Summary of 1D-based heterostructures used in photocatalytic CO2 reduction into valuable products.
Heterojunctions | Photocatalyst | Synthesis method | Light source /intensity | Main product /yield | Ref. |
---|---|---|---|---|---|
Type II | hollow tubular ZnO@ZnS (2 mg) | hydrothermal | 300 W Xe lamp | CO/24.09 μmol g−1 h−1 | [ |
2D/1D nested hollow porous ZnIn2S4/g-C3N4 nanotube (50 mg) | hydrothermal and calcination | 300 W Xe lamp, | CO/79.96 μmol g−1 | [ | |
λ > 420 nm | CH4/17.33 μmol g−1 | ||||
halloysite Nanotubes HNTs@g-C3N4/Au/CdS (HCAC) (20 mg) | annealing and successive ionic layer adsorption and reaction (SILAR) | UV-Vis light irradiation | CO/55.4 μmol g−1 | [ | |
CH4/8.6 μmol g−1 | |||||
ZnSe nanorods-CsSnCl3 perovskite (5 mg) | hot-injection method | 300 W Xe lamp (SolarEdge 700, 100 mW cm−2, 25 °C ) | CO/53.96 μmol g−1 h−1 | [ | |
CH4/2.55 μmol g−1 h−1 | |||||
rod like MOF-derived | solvothermal | 50 W Mercury lamp (λ = 380 nm; 130 mW cm−2) | CO/95.8 μmol g−1 | [ | |
NPC-MoS2@Bi4O5Br2 (20 mg) | CH4/159.9 μmol g−1 | ||||
2D/1D BiOBr/CdS nanorods (10 mg) | hydrothermal | 300 W Xe lamp with a 420 nm cut-off optical filter | CO/13.6 μmol g−1 | [ | |
Z-scheme | 1D/0D hollow Bi2S3 nanotubes/CdxZn1−xS nanospheres (30 mg) | in situ electrostatic | 300 W Xe lamp | CO/32.11 μmol g−1 h−1 | [ |
self-assembly method | H2/33.10 μmol g−1h−1 | ||||
(1D/2D) CoTe nanorods/PCN (25 mg) | self-assembly | 300 W Xe lamp | CO/32.84 μmol g-1 | [ | |
nanorod-shaped CdS/Fe2O3 (0.1 g) | hydrothermal | UV and visible lamp (100 W cm−2 and 9 W cm−2) | CH4/16.5 μmol g−1 | [ | |
BiVO4/Carbon-Coated Cu2O nanowire | electrochemical anodization and carbonization followed by the SILAR method | Visible light (>420 nm) | CO/3.01 μmol g−1 h−1 | [ | |
100 mW cm−2 | |||||
Ni-CoTCPP/TiO2 nanotube | hydrothermal and anodization | 500 W Xe | CH4/52.27 μmol cm-2 h−1 | [ | |
Cu2O QDs/TiO2 nanotubes (50 mg) | hydrothermal | 300 W Xe lamp | CH4/97% | [ | |
ZnO-Au-Titanium oxide nanotubes (0.25 g) | hydrothermal | UV light reactor equipped with eight (8w) light tubes (λ = 254 nm) | CH3OH/ | [ | |
7777.1 μmol g− 1 h− 1 | |||||
P-O linked g-C3N4/TiO2-nanotubes (0.5 g) | solid sublimation and conversion followed by an impregnation method | Xe lamp | Acetic/46.9 ± 0.76 mg L−1 h−1 | [ | |
Methanol/38.2 ± 0.69 mg L−1 h−1 | |||||
Formic acids/28.8 ± 0.64 mg L−1 h−1 | |||||
FeOOH nanorod/PCN (25 mg) | hydrothermal | 300 W Xe lamp with AM1.5 filter | CH4 />85% | [ | |
Zn2GeO4 nanorod/ZIF-67 (150 mg) | deposition of Zn2GeO4 nanorod on highly crystalline ZIF-67 | 300 W Xe lamp | CH3OH/5.15 μmol g−1 h−1 | [ | |
C2H5OH/4.08 μmol g−1 h−1 | |||||
S-scheme | In2S3/Nb2O5 hybrid nanofiber (50 mg) | electrospinning followed by air annealing and solvothermal | simulated sunlight | CO/60.36 μmol g−1 h−1 | [ |
(full spectrum) | |||||
Fe-TiO2‒x/TiO2 nanorod (3 mg) | surface modification approach | 300 W Xe lamp | CO/122 µmol g−1 h−1 | [ | |
CH4/22 µmol g−1 h−1 | |||||
1D/2D g-C3N4 nanorods/CoAlLa-LDH | hydrothermal and calcination | 35 W Xe lamp | CO/44.62 µmol g−1 h−1 | [ | |
CH4/36.66 µmol g−1 h−1 | |||||
W18O49 ultrathin nanowires /CsPbBr3 | hot-injection | 300 W Xe lamp with a power of 100 mW cm−2 with a 420 nm cut-off filter | CO/143 µmol g−1 h−1 | [ | |
(10 mg) | |||||
C-In2O3 nanorods/W18O49 nanowire | hydrothermal | 300 W Xe lamp | CO/135.82 µmol g−1 h−1 | [ | |
(50 mg) | |||||
Ag/AgVO3/TiO2-nanowires (0.25 g) | hydrothermal | UV light | CH3OH/9561.3 μmol g−1 h−1 | [ | |
carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes (5 mg) | hydrothermal | 300 W Xe lamp, AM1.5G | CO/7.121 μmol g−1 h−1 | [ | |
CH4/9.769 μmol g−1 h−1 | |||||
hierarchical Bi2MoO6@In2S3 heterostructured nanotubes (30 mg) | solvothermal | 300 W Xe lamp | CO/28.54 μmol g−1 h−1 | [ | |
(≥ 420 nm) | |||||
In2O3/Nb2O5 hybrid nanofibers (10 mg) | one-step electrospinning | 300 W Xe arc lamp | CO/109.6 mmol g−1 h-1 | [ | |
NiS@Ta2O5 hybrid nanofibers | electrospinning and Ion exchange method | 500 W Xe lamp | CO/43.27 μmol g−1 h−1 | [ | |
CH4/6.56 μmol g−1 h−1 | |||||
SnO2 nanofibers/Cs3Bi2Br9 (30 mg) | electrostatically self-assembling | 300 W Xe lamp | CH4/70% | [ | |
MCS(Mn0.2Cd0.8S)-wrapped MOF-BiOBr nanorods (50 mg) | hydrothermal | 300 W Xe lamp | CO/60.59 μmol g−1 h−1 | [ | |
(λ > 420 nm) | |||||
CoTiO3/Cd9.51Zn0.49S10 nanowire (8 mg) | hydrothermal | Xenon lamp (equipped with 420 nm cut off filter) | CO/11 mmol g−1 h−1 | [ | |
In2O3/Bi19Br3S27 rod-like (50 mg) | calcination and solvothermal | 300 W Xe lamp (λ > 420 nm) | CO/28.36 μmol g−1 h−1 | [ |
|
[1] | 吴永辉, 鄢雨晴, 邓奕翔, 黄微雅, 杨凯, 卢康强. 合理构建S型CdS量子点/In2O3空心纳米管异质结以增强光催化产氢[J]. 催化学报, 2025, 70(3): 333-340. |
[2] | 刘晓明, 姜志锋. 含有带内缺陷能级的S型异质结用于人工光合作用[J]. 催化学报, 2025, 70(3): 5-7. |
[3] | 许明阳, 李真真, 沈荣晨, 张欣, 张治红, 张鹏, 李鑫. 构建卟啉基共价有机框架与Nb2C MXene的S型异质结并应用于光催化过氧化氢生产[J]. 催化学报, 2025, 70(3): 431-443. |
[4] | 温东晓, 王楠, 彭嘉禾, 真嶋哲朗, 江吉周. CuxP/g-C3N4异质结催化剂Cu和P双位点协同光催化C-C偶联制备C2H4[J]. 催化学报, 2025, 69(2): 58-74. |
[5] | 夏兵全, 刘高雄, 樊坤, 陈润东, 刘欣, 李来全. 基于双氧还原中心的共价三嗪框架构建的1D/2D S型异质结促进过氧化氢光合作用[J]. 催化学报, 2025, 69(2): 315-326. |
[6] | 胡灵萱, 张艳, 林倩, 曹凤莹, 莫伟豪, 仲淑贤, 林红军, 谢李燕, 赵雷洪, 柏嵩. 双功能氢氧化物助催化剂在优化二维S型光合成系统耦合CO2还原和H2O氧化能力中的镍钴协同效应[J]. 催化学报, 2025, 68(1): 311-325. |
[7] | 张杨, 徐能能, 巩兵兵, 叶笑笑, 阳宜, 王昭娣, 庄碧艳, 王敏, Woochul Yang, 刘桂成, Joong Kee Lee, 乔锦丽. 可见光驱动的CoS2/CuS@CNT-C3N4光催化剂用于500 mW cm-2 以上的高性能可充放电锌-空气电池[J]. 催化学报, 2025, 68(1): 300-310. |
[8] | 李世杰, 游常俊, 杨方, 梁桂杰, 庄春强, 李鑫. 界面Mo-S化学键调控Mn0.5Cd0.5S/Bi2MoO6 S型异质结增强光催化去除新兴有机污染物[J]. 催化学报, 2025, 68(1): 259-271. |
[9] | 郝宝飞, Younes Ahmadi, Jan Szulejko, 张天豪, 路战胜, Ki-Hyun Kim. 用于光降解气态硫化氢的TiO2/Bi4O5Br2阶梯型异质结的设计和制备: DFT计算、动力学、路径和机制[J]. 催化学报, 2025, 68(1): 282-299. |
[10] | 毛思航, 赫荣安, 宋少青. S型异质结界面超快电子转移促进人工光合成[J]. 催化学报, 2024, 64(9): 1-3. |
[11] | 刘方璇, 孙彬, 刘子妍, 魏英勤, 高婷婷, 周国伟. 空位工程调控中空结构ZnO/ZnS S型异质结用于高效光催化产氢[J]. 催化学报, 2024, 64(9): 152-165. |
[12] | 陈春光, 张金锋, 褚海亮, 孙立贤, Graham Dawson, 代凯. 硫族化物基S型异质结光催化剂[J]. 催化学报, 2024, 63(8): 81-108. |
[13] | 赵艳艳, 杨春燕, 张淑敏, 孙国太, 朱必成, 王临曦, 张建军. 飞秒瞬态吸收光谱研究ZnSe QDs/COF S型异质结光催化产H2O2中载流子传输机理[J]. 催化学报, 2024, 63(8): 258-269. |
[14] | 王福林, 李祥伟, 卢康强, 周漫, 余长林, 杨凯. S型CuInS2@CoS2异质结促进电荷转移以实现高效光催化CO2还原[J]. 催化学报, 2024, 63(8): 190-201. |
[15] | 张棋祺, 苗慧, 王俊, 孙涛, 刘恩周. In2.77S4/K+掺杂g-C3N4自组装S型异质结光催化H2O和O2合成H2O2[J]. 催化学报, 2024, 63(8): 176-189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||