催化学报 ›› 2025, Vol. 70: 115-141.DOI: 10.1016/S1872-2067(24)60238-X
梁超安a, 曾波a, 冯保林b, 史会兵b, 张凤岐b, 刘建华a, 何林a,*(), 丁玉晓a,*(
), 夏春谷a
收稿日期:
2024-10-22
接受日期:
2024-12-29
出版日期:
2025-03-18
发布日期:
2025-03-20
通讯作者:
* 电子信箱: helin@licp.cas.cn (何林),yuxiaoding@licp.cas.cn (丁玉晓).
基金资助:
Chao-an Lianga, Bo Zenga, Baolin Fengb, Huibing Shib, Fengqi Zhangb, Jianhua Liua, Lin Hea,*(), Yuxiao Dinga,*(
), Chungu Xiaa
Received:
2024-10-22
Accepted:
2024-12-29
Online:
2025-03-18
Published:
2025-03-20
Contact:
* E-mail: About author:
Lin He (Lanzhou Institute of Chemical Physics, Chinese Academy of Science) received her B.S degree in Chemistry at Lanzhou University in 2005. She earned her PhD at Fudan University under the supervision of Yong Cao in 2013. Then, she joined Matthias Beller’s group at LIKAT as a postdoctoral fellow. Since autumn 2016, she went back to Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences and started her independent research. Her current research is focused on applied catalysis for carbonylation. She has published more than 60 papers in Science, Angew. Chem. Int. Ed. and etc.Supported by:
摘要:
烯烃氢甲酰化反应是产能规模最大的工业过程之一, 用于满足对醛衍生物及其下游产品的巨大需求. 自20世纪60年代以来, 均相钴配合物是最广泛应用的工业化催化剂. 然而, 多相催化在催化剂与产物分离方面的便捷性、更短的工艺流程以及较低的制造成本方面具有显著优势. 然而, 目前尚未有成功的多相化钴基催化剂应用于工业羰化反应的实例. 为了解决催化剂分离难题并深入阐释反应的催化机制, 本文总结了多相催化体系的最新研究进展, 并详细探讨了其反应性能.
本文聚焦于多相催化体系活性金属流失的科学问题, 详细探讨了这一问题在实际催化过程中对催化性能的影响. 在多相催化反应中, 活性金属的流失、聚集或表面活性位点减少等问题常常导致催化剂活性衰减, 进而影响催化反应的效率与稳定性. 本文深入分析了不同载体对活性金属的负载效果, 以及不同载体材料对不同类型烯烃催化活性的影响. 通过对比研究氧化硅、聚合物、碳基材料等载体, 揭示了不同载体对催化活性的不同表现. 具体而言, 载体能够通过调整金属分散度和催化剂表面结构, 显著提升催化剂对特定烯烃的选择性和活性, 而另一些载体则可能由于其本身的特性或其他性质对催化反应产生不利影响. 为了进一步提升钴基催化剂的稳定性, 审慎分析了通过载体改性和添加剂引入来稳定钴物种的策略. 例如, 通过载体的调控、表面官能团的引入以及元素掺杂等手段, 可以有效地抑制钴物种的流失或聚集, 增加催化剂的稳定性. 此外, 研究还探讨了添加助剂对催化剂性能的改善作用, 这些助剂不仅能够稳定金属物种, 还能优化催化反应的选择性和活性. 因此, 载体的设计与改性以及助剂的选择和引入成为解决钴基催化剂流失问题的重要途径, 并为探究多相催化体系至今尚未实现工业化的原因提供了思路. 同时, 本文还对氢甲酰化反应的机理进行了总结, 提出了可能的多相氢甲酰化反应机理. 对于机理的进一步理解将有助于催化剂的设计与优化, 同时也为反应的规模化应用提供了理论依据. 此外, 我们还提出了对多相催化氢甲酰化未来发展方向的洞见, 包括其面临的挑战、潜在的机遇以及应用前景.
综上所述, 多相烯烃氢甲酰化反应的研究是在催化剂的设计与优化以及反应机理的深入认识方面均取得了显著进展. 本综述加深了对多相烯烃氢甲酰化的基础认识, 并为该领域研究提供指导, 以期实现这一技术在工业中的成功应用.
梁超安, 曾波, 冯保林, 史会兵, 张凤岐, 刘建华, 何林, 丁玉晓, 夏春谷. 烯烃氢甲酰化的钴基多相催化体系[J]. 催化学报, 2025, 70: 115-141.
Chao-an Liang, Bo Zeng, Baolin Feng, Huibing Shi, Fengqi Zhang, Jianhua Liu, Lin He, Yuxiao Ding, Chungu Xia. Heterogeneous Co-based catalytic systems for alkene hydroformylation[J]. Chinese Journal of Catalysis, 2025, 70: 115-141.
Catalyst | Substrate | T (°C) | P (MPa) | t (h) | Conversion (%) | Selectivity (%) | Cobalt leaching (%) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Aldehyde | Alcohol | ||||||||
Fibrous Co3O4 | 1-octene | 150 | 5.5 | 12 | 92 | 93 | 0.23 | [ | |
Octahedron Co3O4 | 1-octene | 170 | 4 | 12 | 88.06 | 75.26 | 10.35 | 0.91 | [ |
Co@CoO | 1-octene | 130 | 4 | 8 | 99 | 97 | [ | ||
2Fe2Cu-Co3O4 | 1-octene | 150 | 7 | 4 | 99.82 | 50.80 | [ | ||
Co-B | 1-octene | 120 | 5 | 2.5 | 71.1 | 98.7 | [ | ||
Co-P-B | 1-octene | 120 | 5 | 2.5 | 97.2 | 99.0 | [ | ||
Co-Ni-P-B | 1-octene | 120 | 5 | 4 | 99.6 | 96.3 | [ | ||
Ultrafine Co | 1-hexene | 100 | 2.5 | 1 | 95 | 38 | [ | ||
Co/SiO2 (Q-6) | 1-hexene | 130 | 5 | 2 | 37.1 | 88.4 | 1.0 | [ | |
Co-Pd/SiO2 | 1-hexene | 130 | 5 | 2 | 89.7 | 77.9 | [ | ||
Co-Ru/SiO2 (EG) | 1-hexene | 130 | 5 | 1 | 93.01 | 79.66 | [ | ||
CoGa IMC/SiO2 | 1-hexene | 130 | 6 | 5 | >99 | 57.3 | 1.6 | [ | |
K-Co/SiO2 | 1-Hexene | 150 | 4 | 6 | 99.9 | 74.6 | 6.4 | [ | |
CoZrP-2.0 (P/Zr = 2) | 1-octene | 160 | 4 | 6 | 86.5 | 91.8 | 1.7 | [ | |
CoRh-HT | 1-octene | 100 | 5 | 6 | 98 | 96 | [ | ||
Rh-Co-Pi/ZnO | 1-decene | 100 | 4 | 4 | >95 | >85 | [ | ||
Co-Rh/Fe3O4 | dicyclopentadiene | 140 | 7 | 4 | 100 | 6.2 | 90.6 | [ | |
Co-B/ZrO2 | 1-octene | 120 | 5 | 2.5 | 86.9 | 86.4 | 89.0 | [ | |
Co-B/SBA-15 | 1-octene | 120 | 5 | 2.5 | 85.6 | 98.7 | 20.0 | [ | |
Co-Ni-B/SBA-15 | 1-octene | 120 | 5 | 4 | 100 | 91.24 | [ | ||
Co (1%)/β-Mo2C | propylene | 160 | 4 | 10 | >99 | 95 | 5 | [ | |
Co-PPh3@POPs | 1-hexene | 150 | 3 | 5 | 97.6% | 45.7% | [ | ||
SBA-15-RCo | 1-octene | 100 | 6.5 | 8 | 97.4 | 91.2 | [ | ||
Co-B/TiO2 | cyclohexene | 100 | 6 | 1 | 99.15 | 65.28 | 34.72 | [ | |
Co/phen@TiO2 | n-butyl acrylate | 100 | 4 | 18 | >99 | 82 | [ | ||
CoFe/NC-800 | diisobutylene | 130 | 4 | 12 | 92 | 79.6 | [ | ||
Pd-Co/AC | 1-hexene | 130 | 5 | 2 | 34.5 | 47.2 | [ | ||
Co/CNTs | 1-octene | 130 | 5 | 6 | 25.9 | 52.4 | [ | ||
Co-B/CNTs | 1-octene | 120 | 5 | 2.5 | 92.2 | 96.2 | 13.0 | [ | |
Co-Ru/CNTs | 1-octene | 130 | 5 | 6 | 70.9 | 65.75 | [ | ||
CoNx@NC | 1-hexene | 120 | 4 | 7.5 | 94 | 80 | 1.9 | [ | |
Co/N-C-800 | 1-hexene | 160 | 4 | 6 | 47.2 | 66.3 | [ | ||
Rh-Co/g-CN | styrene | 170 | 6 | 7 | 99.9 | 7.4 | 87.8 | [ | |
Co3O4-g-C3N4 | 1-octene | 150 | 7 | 8 | 99.9 | 77.8 | [ | ||
Co/C600 | 1-octene | 140 | 4 | 18 | 90 | 76 | 0.7 | [ | |
Co/phen@C | n-butyl acrylate | 100 | 4 | 18 | >99 | 83 | [ | ||
Co-Ph3PO/PDMS/SiO2 | mixed octenes | 160 | 5 | 2.5 | 24.6 | 93.7 | 0.001 | [ | |
Co/POL-POPh3 | 2-octene | 150 | 3 | 4 | 94.6 | 51.1 | 4.2 | [ |
Table 1 List of different heterogeneous cobalt-based hydroformylation catalysts.
Catalyst | Substrate | T (°C) | P (MPa) | t (h) | Conversion (%) | Selectivity (%) | Cobalt leaching (%) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Aldehyde | Alcohol | ||||||||
Fibrous Co3O4 | 1-octene | 150 | 5.5 | 12 | 92 | 93 | 0.23 | [ | |
Octahedron Co3O4 | 1-octene | 170 | 4 | 12 | 88.06 | 75.26 | 10.35 | 0.91 | [ |
Co@CoO | 1-octene | 130 | 4 | 8 | 99 | 97 | [ | ||
2Fe2Cu-Co3O4 | 1-octene | 150 | 7 | 4 | 99.82 | 50.80 | [ | ||
Co-B | 1-octene | 120 | 5 | 2.5 | 71.1 | 98.7 | [ | ||
Co-P-B | 1-octene | 120 | 5 | 2.5 | 97.2 | 99.0 | [ | ||
Co-Ni-P-B | 1-octene | 120 | 5 | 4 | 99.6 | 96.3 | [ | ||
Ultrafine Co | 1-hexene | 100 | 2.5 | 1 | 95 | 38 | [ | ||
Co/SiO2 (Q-6) | 1-hexene | 130 | 5 | 2 | 37.1 | 88.4 | 1.0 | [ | |
Co-Pd/SiO2 | 1-hexene | 130 | 5 | 2 | 89.7 | 77.9 | [ | ||
Co-Ru/SiO2 (EG) | 1-hexene | 130 | 5 | 1 | 93.01 | 79.66 | [ | ||
CoGa IMC/SiO2 | 1-hexene | 130 | 6 | 5 | >99 | 57.3 | 1.6 | [ | |
K-Co/SiO2 | 1-Hexene | 150 | 4 | 6 | 99.9 | 74.6 | 6.4 | [ | |
CoZrP-2.0 (P/Zr = 2) | 1-octene | 160 | 4 | 6 | 86.5 | 91.8 | 1.7 | [ | |
CoRh-HT | 1-octene | 100 | 5 | 6 | 98 | 96 | [ | ||
Rh-Co-Pi/ZnO | 1-decene | 100 | 4 | 4 | >95 | >85 | [ | ||
Co-Rh/Fe3O4 | dicyclopentadiene | 140 | 7 | 4 | 100 | 6.2 | 90.6 | [ | |
Co-B/ZrO2 | 1-octene | 120 | 5 | 2.5 | 86.9 | 86.4 | 89.0 | [ | |
Co-B/SBA-15 | 1-octene | 120 | 5 | 2.5 | 85.6 | 98.7 | 20.0 | [ | |
Co-Ni-B/SBA-15 | 1-octene | 120 | 5 | 4 | 100 | 91.24 | [ | ||
Co (1%)/β-Mo2C | propylene | 160 | 4 | 10 | >99 | 95 | 5 | [ | |
Co-PPh3@POPs | 1-hexene | 150 | 3 | 5 | 97.6% | 45.7% | [ | ||
SBA-15-RCo | 1-octene | 100 | 6.5 | 8 | 97.4 | 91.2 | [ | ||
Co-B/TiO2 | cyclohexene | 100 | 6 | 1 | 99.15 | 65.28 | 34.72 | [ | |
Co/phen@TiO2 | n-butyl acrylate | 100 | 4 | 18 | >99 | 82 | [ | ||
CoFe/NC-800 | diisobutylene | 130 | 4 | 12 | 92 | 79.6 | [ | ||
Pd-Co/AC | 1-hexene | 130 | 5 | 2 | 34.5 | 47.2 | [ | ||
Co/CNTs | 1-octene | 130 | 5 | 6 | 25.9 | 52.4 | [ | ||
Co-B/CNTs | 1-octene | 120 | 5 | 2.5 | 92.2 | 96.2 | 13.0 | [ | |
Co-Ru/CNTs | 1-octene | 130 | 5 | 6 | 70.9 | 65.75 | [ | ||
CoNx@NC | 1-hexene | 120 | 4 | 7.5 | 94 | 80 | 1.9 | [ | |
Co/N-C-800 | 1-hexene | 160 | 4 | 6 | 47.2 | 66.3 | [ | ||
Rh-Co/g-CN | styrene | 170 | 6 | 7 | 99.9 | 7.4 | 87.8 | [ | |
Co3O4-g-C3N4 | 1-octene | 150 | 7 | 8 | 99.9 | 77.8 | [ | ||
Co/C600 | 1-octene | 140 | 4 | 18 | 90 | 76 | 0.7 | [ | |
Co/phen@C | n-butyl acrylate | 100 | 4 | 18 | >99 | 83 | [ | ||
Co-Ph3PO/PDMS/SiO2 | mixed octenes | 160 | 5 | 2.5 | 24.6 | 93.7 | 0.001 | [ | |
Co/POL-POPh3 | 2-octene | 150 | 3 | 4 | 94.6 | 51.1 | 4.2 | [ |
Fig. 2. (a) SEM images of fibrous Co3O4 nanocatalyst. (b) Recycle study of nano-Co3O4 catalyst. Reprinted with permission from Ref. [47], Copyright 2017, Elsevier, Amsterdam. (c) Catalytic performance of 1-heptene hydroformylation reaction. (d) Catalytic reaction diagram of Co3O4 1-hexene with different morphologies Reprinted with permission from Ref. [48], Copyright 2020, Elsevier, Amsterdam.
Fig. 3. (a) DESs used for the synthesis of Co catalysts. (b) Schematic representation of the hydroformylation reaction catalysed by Co@CoO core-shell nanoparticle. (c) In situ FTIR spectra of CO adsorption on Co@CoO-PEG, the spectra were recorded after CO adsorption for 3 (a), 8 (b), 14 (c), 19 (d), 24 (e), 30 (f) min and Ar purging for 7 min (g) [50]. (d) H2-TPR profiles of monometal doped (left) and bimetal co-doped Co3O4 (right). Reprinted with permission from Ref. [49], Copyright 2023, Elsevier, Amsterdam.
Fig. 4. (a) XRD patterns of fresh and thermal-treated Co-B samples. (a) Fresh Co-B; (b) Co-B-N2-300; (c) Co-B-N2-500, (d) Co-B-H2-300, e metal Co [58]. (b) TEM images of cobalt nanoparticles of the catalyst with diameter distribution. Pressure-time plots and curve for mercury poisoning tests of hydroformylation of 1-hexene catalyzed by the cobalt nanoparticle catalyst (c) and RhCl(PPh3)3 (d) [54].
Fig. 5. (a) Schematic representation of the elution of active metal in the presence of a protective agent for active metals. (b) In situ FTIR transmission spectroscopy recorded desorption in the vacuum condition for 15 min over “a” SiO2 and the “b” Co/SiO2 catalyst at 100 °C. Reprinted with permission from Ref. [38], Copyright 2018, American Chemical Society, Washington, DC. (c) In situ FTIR transmission spectroscopy recorded over “A” Co/SiO2 and “B” CoGa IMC/SiO2 catalysts by introducing 5 MPa syngas as the reaction gas after the adsorption of 1-hexene in vacuum at 423 K. From the bottom to top in each panel: 0, 0.5, 1, 2, 3, 4, 7, 10, 20, 25, and 30 min. (d) The amount of cobalt leaching of Co/SiO2 and CoGa IMC/SiO2 catalysts under different reaction pressures. Reprinted with permission from Ref. [74], Copyright 2022, Elsevier, Amsterdam.
Fig. 6. (a) Electronic and chemical properties of catalysts. electron localization function contour maps. (b) Charge difference maps. (c) Catalytic performance of catalysts in the alkene hydroformylation. (d) In situ reaction cycling test. Reprinted with permission from Ref. [76], Copyright 2024, American Chemical Society, Washington, DC.
Fig. 7. (a) Schematic representation of the Rh-Co-Pi/ZnO catalysed hydroformylation reaction. Reprinted with permission from Ref. [78], Copyright 2021, American Chemical Society, Washington, DC. (b) Schematic diagram of ZrP-catalyzed olefin hydroformylation reaction. (Reprinted with permission from Ref. [84], Copyright 2022, Elsevier, Amsterdam.
Fig. 8. (a) Schematic representation of hydroformylation over Co-Co2C/AC catalysts. Reprinted with permission from Ref. [100], Copyright 2014, American Chemical Society, Washington, DC. (b) Mechanistic catalysts for the hydroformylation reaction of 1-hexene on silica zeolite-1/Pd-Co/AC with synthesis gas [103].
Fig. 9. (a) Schematic illustration of the preparation processes of CoFe/NC catalysts. Reprinted with permission from Ref. [108], Copyright 2022, American Chemical Society, Washington, DC. (b) Co contents of samples, measured by ICP-AES [55]. (c) Schematic preparation of CoNx@NC catalysts. (d) Reaction profiles for experiments performed with CoNx@NC as catalyst (red line) and after hot filtration (grey dotted line) [109].
Fig. 10. (a) Illustrations of the formation process of the Rh Co/g-CN catalyst. (b) Plausible mechanism for tandem hydroformylation-hydrogenation of styrene catalyzed by Rh Co/g-CN [110]. (c) In situ DRIFTS spectra on 5 %Co3O4-g-C3N4 [111]. (d) Schematic representation of metal-support interactions of Co1/β-Mo2C catalysts in optimising charge density and stabilising active sites [112].
Fig. 11. (a) Illustrations of the formation process of cobalt-based materials. (b) 1-octene hydroformylation with pyrolyzed and steam pyrolyzed catalysts. (c) Cobalt leaching determined by ICP-OES. (d) image of the final solutions at 120 °C. Conditions: 1-octene (2 mmol), catalyst (25 mg), toluene (5 mL), CO/H2 (40 bar), 18 h, (e) Recycling of Co@C600 catalyst in the 1-octene hydroformylation [113].
Fig. 12. (a) Synthesis routes of Co-PPh3@POPs catalysts [121]. (b) Construction of POL-POPh3 polymer and Co/POL-POPh3 catalyst, (c) Recycling tests of the Co/POL-POPh3 catalyst [123]. (d) Schematic representation of cobalt carbonyl grafting on SBA-15 surface through organosilane ligand. Reprinted with permission from Ref. [124], Copyright 2016, Elsevier, Amsterdam.
Fig. 13. Structures and molecular formulas of the MOFs used in hydroformylation. (a) MixUMCM-1-NH2; (b) MOF-74(Zn). Here, bdc represents 1,4-benzenedicarboxylate; abdc represents 2-amino-1, 4-benzenedicarboxylate, btb represents 4,4′,4′′-benzene-1,3, 5-triyl-trisbenzoate and dobdc represents 2,5-dioxido-1, 4-benzenedicarboxylate. Hydrogen and nitrogen atoms are omitted for clarity [133].
Fig. 15. (a) Structure of trisodium salt of tris (m-sulfophenyl) phosphine (TPPTS). (b) Trisodium salt of trisulfonated tris (biphenyl) phosphine (BiphTS). (c) Structure of CTAB surfactant. (d) Structure of Marlipal O13/18 surfactant.
Fig. 16. (a) Process scheme (1-Reaction, 2-Cobalt recovery in the ionic liquid, 3-Separation). (b) Recycling experiments with or without pyridine [148]. (c) Structure of the pre-catalyst Co2(CO)6[P(3-FC6H4)3]2 and HCo(CO)3[P(3-FC6H4)3] [150].
Fig. 17. (a) Homogeneous catalytic mechanism of hydroformylation. (b,c) Proposed reaction pathways for hydroformylation of 1-heptene on Co3O4 octahedron. Reprinted with permission from Ref. [48], Copyright 2020, Elsevier, Amsterdam. (d) Mechanism of hydroformylation catalyzed by different metals doped with Co3O4. Reprinted with permission from Ref. [49], Copyright 2023, Elsevier, Amsterdam.
Fig. 18. (a) Proposed hydroformylation mechanism involving ZrP-supporting single-atom Co(II) catalyst. Reproduced with permission from Ref. [84]. Copyright 2022 Elsevier, Inc. (b) The reaction pathway of 2-octene hydroformylation to linear aldehydes on Co/POL-POPh3 [123].
Fig. 20. (a) Elution and protection strategies for active metal cobalt during hydroformylation. (b) Stabilization of the active metal on the support by means of a protective agent. (c) Stabilization of the active metal on the carrier by introduction of a heteroatomic nitrogen species. (d) Introduction of active metals on non-precious metal stabilized supports.
Fig. 21. (a) Common biphasic reaction. (b) Addition of surfactant to increase reaction contact area. (c) Formation of stable ligand-modified cobalt catalysts. (d) Introduction of amphiphilic materials to enhance interfacial mass transfer ('S' stands for substrate, 'P' for product, 'L' for ligand).
|
[1] | 钟百灵, 胡俊蝶, 杨晓刚, 舒银颖, 蔡亚辉, 李长明, 曲家福. 金属有机框架中限域金属物种用于CO2加氢: 合成方法、催化机理及未来展望[J]. 催化学报, 2025, 68(1): 177-203. |
[2] | Sam Van Minnebruggen, Ka Yan Cheung, Trees De Baerdemaeker, Niels Van Velthoven, Matthias Degelin, Galahad O’Rourke, Hiroto Toyoda, Andree Iemhoff, Imke Muller, Andrei-Nicolae Parvulescu, Torsten Mattke, Jens Ferbitz, 吴勤明, 肖丰收, Toshiyuki Yokoi, Nils Bottke, Dirk De Vos. 利用择形分子筛异构化亚甲基二苯胺[J]. 催化学报, 2024, 62(7): 124-130. |
[3] | 李洋, 王雄, 胡星盛, 胡彪, 田昇, 王丙昊, 陈浪, 陈广辉, 彭超, 申升, 尹双凤. 可循环Pd/TiO2构筑及其紫外光催化苯甲醛与碘苯偶联合成二苯甲酮[J]. 催化学报, 2024, 59(4): 159-168. |
[4] | 杜晓蕊, 黄一珂, 潘晓丽, 江训柱, 苏杨, 杨静怡, 郭亚琳, 韩冰, 文承彦, 王晨光, 乔波涛. “自上而下”构筑TiO2与Pt纳米簇之间的活性界面I: 再分散过程和机制[J]. 催化学报, 2024, 58(3): 237-246. |
[5] | 杜晓蕊, 黄一珂, 潘晓丽, 江训柱, 苏杨, 杨静怡, 郭亚琳, 韩冰, 文承彦, 王晨光, 乔波涛. “自上而下”构筑TiO2与Pt纳米簇之间的活性界面II: 催化一氧化碳氧化反应性能和机理[J]. 催化学报, 2024, 58(3): 247-254. |
[6] | 党健, 李玮杰, 秦斌, 柴玉超, 武光军, 李兰冬. 分子筛限域单位点钴体系催化芳香族化合物C-H键自调节高效氧化[J]. 催化学报, 2024, 57(2): 133-142. |
[7] | 杨艳玲, 韩沛杰, 张元宝, 林敬东, 万绍隆, 王勇, 刘海超, 王帅. 用于间甲酚高效加氢脱氧制芳烃的负载型W2C纳米催化剂的活性位研究[J]. 催化学报, 2024, 67(12): 91-101. |
[8] | 佛雨萌, 宋少佳, 杨坤, 纪向阳, 杨璐源, 黄刘赛, 陈欣宇, 吴学秋, 刘坚, 赵震, 宋卫余. 从头算分子动力学模拟揭示熵效应对Co@BEA分子筛催化乙烷脱氢反应的影响[J]. 催化学报, 2024, 65(10): 195-205. |
[9] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. C4二醇的发酵生产及其化学催化升级为高价值化学品的研究进展[J]. 催化学报, 2023, 52(9): 99-126. |
[10] | 赵梦, 徐晶, 宋术岩, 张洪杰. 核壳/蛋黄壳纳米反应器用于串联催化[J]. 催化学报, 2023, 50(7): 83-108. |
[11] | 刘润泽, 邵雪, 王畅, 戴卫理, 关乃佳. 甲醇制烃反应机理: 基础及应用研究[J]. 催化学报, 2023, 47(4): 67-92. |
[12] | 焦龙, 江海龙. 金属有机框架材料在催化领域的研究现状与展望[J]. 催化学报, 2023, 45(2): 1-5. |
[13] | 聂超, 龙向东, 刘琪, 王嘉, 展飞, 赵泽伦, 李炯, 席永杰, 李福伟. 原子分散Ru-P-Ru催化剂的制备及其在多类加氢中的高效应用[J]. 催化学报, 2023, 45(2): 107-119. |
[14] | 孙万军, 朱佳玉, 张美玉, 孟翔宇, 陈梦雪, 冯钰, 陈新龙, 丁勇. 钴基非均相催化剂在光催化水分解、二氧化碳还原和氮还原的研究进展与展望[J]. 催化学报, 2022, 43(9): 2273-2300. |
[15] | 翁雪霏, 杨双莉, 丁丁, 陈明树, 万惠霖. 宽波段原位红外吸收光谱在Pd/SiO2和Cu/SiO2催化剂上CO氧化中的应用[J]. 催化学报, 2022, 43(8): 2001-2009. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||