催化学报 ›› 2025, Vol. 76: 198-209.DOI: 10.1016/S1872-2067(25)64753-X

• 论文 • 上一篇    下一篇

商用Cu催化剂上Cu(100)晶界驱动不对称C-C偶联实现高效CO还原

卢先龙a,b,f, 王丽丽b, 赵学洋c, 潘斌斌d, 李振东a,b, 杜向飞b,e, 张士汉a,b,f,*(), 董帆b,*(), 邓邦为b,*()   

  1. a浙江工业大学环境学院, 浙江杭州 310014
    b电子科技大学长三角研究院(湖州), 浙江湖州 313001
    c西南交通大学环境科学与工程学院, 四川成都 611756
    d苏州大学功能纳米与软物质研究院, 江苏省碳基功能材料与器件高技术研究重点实验室, 江苏苏州 215123
    e新疆大学化工学院, 石油天然气精细化工部重点实验室, 新疆乌鲁木齐 830017
    f浙江工业大学能源与碳中和科教融合学院, 浙江省清洁能源转化与利用重点实验室, 浙江杭州 310014
  • 收稿日期:2025-03-21 接受日期:2025-05-06 出版日期:2025-09-18 发布日期:2025-09-10
  • 通讯作者: 张士汉,董帆,邓邦为
  • 基金资助:
    国家自然科学基金(U23A20677);国家自然科学基金(22022610);国家自然科学基金(22406020);浙江省自然科学基金(LQ24B070010);中国博士后科学基金(2023M730491);中国博士后科学基金(GZC20230373)

Unlocking asymmetric C-C coupling pathways on commercial Cu catalysts via Cu (100) grain boundaries for efficient and durable CO electroreduction

Xianlong Lua,b,f, Lili Wangb, Xueyang Zhaoc, Binbin Pand, Zhendong Lia,b, Xiangfei Dub,e, Shihan Zhanga,b,f,*(), Fan Dongb,*(), Bangwei Dengb,*()   

  1. aCollege of Environment, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    bYangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, Zhejiang, China
    cSchool of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan, China
    dInstitute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
    eMinistry Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China
    fZhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
  • Received:2025-03-21 Accepted:2025-05-06 Online:2025-09-18 Published:2025-09-10
  • Contact: Shihan Zhang, Fan Dong, Bangwei Deng
  • Supported by:
    National Natural Science Foundation of China(U23A20677);National Natural Science Foundation of China(22022610);National Natural Science Foundation of China(22406020);Zhejiang Provincial Natural Science Foundation of China(LQ24B070010);China Postdoctoral Science Foundation(2023M730491);China Postdoctoral Science Foundation(GZC20230373)

摘要:

铜(Cu)基催化剂在电催化二氧化碳/一氧化碳还原反应(CO(2)RR)中展现出高效合成高附加值多碳(C2+)产物的显著优势. 然而, 在工业级电流密度的传质条件下, Cu基催化剂的结构动态重构导致其稳定性较差, 这为精准识别本征催化活性位点带来了巨大挑战. 尽管原位和非原位表征技术已提供重要线索, 但目前对活性位点的本质(Cu的价态、纳米颗粒尺寸、暴露晶面及晶界等)仍存在争议. 动态结构演变与局部微环境变化(如pH梯度)的多重耦合效应, 进一步增加了铜基催化剂构效关系的解析难度. 因此, 在可控传质条件下系统研究晶面与晶界的协同作用机制, 将有助于深入理解Cu基催化剂的催化本质.

本文选择了三种典型的商业化Cu基催化剂(Cu、CuO、Cu2O)作为模型, 在膜电极组件电解槽系统中阐明CORR性能与相关活性位点之间的构效关系. 研究结果表明, 仅Cu催化剂表现出最优的C2+产物选择性, 在200-500 mA cm-2的电流密度范围内, C2+产物的法拉第效率最高达到86.7%, 并且在200 mA cm-2下稳定运行超过110 h, 同时显著抑制了析氢副反应的发生. 基于此, 为了揭示造成三种催化剂性能差异的本质原因, 通过多维度表征与理论计算相结合的研究方法进行深入分析, 系统阐明了Cu基催化剂晶面与晶界的协同作用对C2+产物形成的影响机制. 首先, 通过对照实验系统地排除了Cu元素化学价态、电化学活性面积(ECSA)及局部pH值等常规因素对催化性能差异的影响. X射线衍射、X射线光电子能谱和原位红外光谱等表征手段证实三种催化剂在反应过程中均被还原为Cu0. 循环伏安法测试进一步表明, 三种催化剂具有相似的ECSA及局部pH值. 其次, 结合高分辨透射电镜和OH-吸附的分析结果, 揭示了富含Cu(100)晶面的晶界区域是催化反应的最优活性位点. 最后, 利用原位红外光谱监测到形成C2+产物的关键中间体, 其中最可能的反应途径是*CHO和*CO中间体之间不对称的C-C偶联, 密度泛函理论计算表明, Cu(100)晶界具有最低的反应能垒(-0.424 eV), 进一步证实Cu(100)主导的晶界通过不对称C-C偶联促进C2+产物的生成的反应机制.

综上, 本文在相似的传质条件下, 通过对照实验揭示了Cu(100)主导晶界上不对称的C-C偶联形成C2+产物的反应机理. 该成果为电催化体系中晶面和晶界之间的协同关系提供了更深入的见解, 并为高效Cu基催化剂的设计提供了新思路.

关键词: 一氧化碳电还原, 不对称碳-碳耦合, 晶界, 铜基催化剂, 多碳产品

Abstract:

Copper (Cu)-based catalysts show significant potential for producing high value-added C2+ products in electrocatalytic CO2/CO reduction reactions (CO(2)RR). However, the structural reconfiguration during operation poses substantial challenges in identifying the intrinsic catalytic active site, especially under similar mass transport conditions. Herein, three typical and commercial Cu-based catalysts (Cu, CuO, and Cu2O) are chosen as representatives to elucidate the structure-activity relationship of CORR in the membrane electrode assembly electrolyzer. Notably, only the Cu catalyst demonstrates the most suppression of hydrogen evolution reaction, thus achieving the highest FE of 86.7% for C2+ products at a current density of 500 mA cm-2 and maintaining a stable electrolysis over 110 h at a current of 200 mA cm-2. The influence of chemical valence state of Cu, electrochemical surface area, and local pH were firstly investigated and ruled out for the significant FE differences. Finally, based on the structure analysis from high resolution transmission electron microscope, OH- adsorption, in situ infrared spectroscopy and density functional theory calculations, it is suggested that the asymmetric C-C coupling (via *CHO and *CO) is the most probable reaction pathway for forming C2+ products, with Cu (100)-dominant grain boundaries (GBs) being the most favorable active sites. These findings provide deeper insights into the synergistic relationship between crystal facets and GBs in electrocatalytic systems.

Key words: CO electroreduction, Asymmetric C-C coupling, Grain boundaries, Cu-based catalyst, C2+ product