催化学报 ›› 2025, Vol. 77: 110-122.DOI: 10.1016/S1872-2067(25)64762-0

• 论文 • 上一篇    下一篇

锗硅沸石的Brönsted酸性及其固体酸催化反应性能

陆琨a, 刘千a, 陈立宇a, 王继隆b, 袁振轩f, 孔晓a, 白云星f, 蒋金刚b, 关业军b,d, 马思聪c,*(), 徐浩b,d,*(), 黄伟新f,*(), 刘智攀c,e, 吴鹏b,d,*()   

  1. a上海理工大学材料与化学学院, 上海 200093
    b华东师范大学化学与分子工程学院, 石油化工分子转化与反应工程全国重点实验室, 上海市绿色化学与化工过程绿色化重点实验室, 上海 200062
    c中国科学院上海有机化学研究所, 金属有机化学国家重点实验室, 上海 200032
    d上海崇明生态研究院, 上海 202162
    e复旦大学化学系, 上海市分子催化与功能材料重点实验室, 计算物质科学教育部重点实验室, 上海 200433
    f中国科学技术大学化学物理系, 精准智能化学全国重点实验室, 微尺度物质科学国家研究中心, 能源材料化学协同创新中心(iChEM), 表界面化学与能源催化安徽普通高校重点实验室, 安徽合肥 230026
  • 收稿日期:2025-04-13 接受日期:2025-06-04 出版日期:2025-10-18 发布日期:2025-10-05
  • 通讯作者: *电子信箱: pwu@chem.ecnu.edu.cn (吴鹏),hxu@chem.ecnu.edu.cn (徐浩),huangwx@ustc.edu.cn (黄伟新),scma@mail.sioc.ac.cn (马思聪).
  • 基金资助:
    国家自然科学基金(22202132);国家自然科学基金(22222201);国家重点研发项目(2021YFA1501401);国家重点研发项目(2023YFB3810602)

Origin of Brönsted acidity in germanosilicates from neighboring Ge-hydroxyl groups

Kun Lua, Qian Liua, Liyu Chena, Jilong Wangb, Zhenxuan Yuanf, Xiao Konga, Yunxing Baif, Jingang Jiangb, Yejun Guanb,d, Sicong Mac,*(), Hao Xub,d,*(), Weixin Huangf,*(), Zhipan Liuc,e, Peng Wub,d,*()   

  1. aSchool of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
    bState Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
    cState Key Laboratory of Metal Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
    dInstitute of Eco-Chongming, Shanghai 202162, China
    eShanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
    fKey Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
  • Received:2025-04-13 Accepted:2025-06-04 Online:2025-10-18 Published:2025-10-05
  • Contact: *E-mail: pwu@chem.ecnu.edu.cn (P. Wu), hxu@chem.ecnu.edu.cn (H. Xu), huangwx@ustc.edu.cn (W. Huang), scma@mail.sioc.ac.cn (S. Ma).
  • Supported by:
    National Natural Science Foundation of China(22202132);National Natural Science Foundation of China(22222201);National Key R&D Program of China(2021YFA1501401);National Key R&D Program of China(2023YFB3810602)

摘要:

构建沸石分子筛的新型酸位点对推动固体酸催化发展具有重要意义. 与其他T原子(T = Si, Al, P, Ti等)相比, Ge原子半径更大、Ge-O键长更长, 且Si-O-Ge/Ge-O-Ge键角相较Si-O-Si/Al更小, 这些特性有利于形成双四元环甚至双三元环等高张力环结构单元. 这类次级结构单元有利于形成多维超大孔道的锗硅沸石晶体, 其路易斯酸位或羟基相关的弱酸位在大分子转化、手性催化和水合反应中展现出独特催化性能, 但其实际应用受限于偏低的水热稳定性. 此外, 锗硅沸石为四价Ge和Si氧四面体组成中性骨架结构, 通常被认为不具有Brönsted酸性位.

本文使用1,4-双(二甲基-1-金刚烷胺基)丁烷为结构导向剂, 制备了富锗的IWW结构硅锗沸石IWW-A (Si/Ge ≈ 1), 并通过X-射线衍射、扫描电镜、高分辨透射电镜、选区电子衍射等多种表征技术确认了晶体结构. IWW-A经973 K高温煅烧及三年潮湿环境储存后仍保持骨架完整, 展现出优异的结构稳定性. 红外质谱-程序升温脱附(IRMS-TPD), NH3-TPD及吸附吡啶红外光谱等结果表明, IWW-A与其脱锗处理得到的富硅衍生物以及其他拓扑结构的硅锗沸石相比, 呈现更强的Brönsted酸性(BAS)和路易斯酸性. 傅里叶变换红外光谱、固体核磁、微量热法和NH3-IRMS-TPD的表征结果表明, IWW-A的Brönsted酸位源于双四元环d4r单元中邻近的Ge-OH基团, BAS浓度高达621 μmol g-1. 微量热测定表明, 在脱除一部分骨架锗后, 氨不可逆吸附能从88.1降至65.3 kJ mol-1, 表明酸强度随骨架Ge含量降低而减弱. IWW-A在催化正己烷裂解反应中表现出52%的低碳烯烃选择性, 相比ZSM-5选择性提高10%, 积碳量相对量降低28%; 在甲醇制烯烃(MTO)反应中, IWW-A的低碳烯烃选择性达61%, 且连续反应12 h后转化率仍维持98%, 显著优于快速失活的ZSM-5(转化率73%). 这归因于Ge原子对构型带来的适度酸性: 密度泛函理论计算证实Ge原子对(-Ge-O-Ge-或邻近-Ge-O-Si-)使Ge-OH水解能降至-10.6 kJ mol-1 (孤立Ge为-5.8 kJ mol-1), 且氨吸附能随相邻Ge原子数增加从62.4升至68.2 kJ mol-1. 上述结果揭示了邻近Ge-OH基团密度与酸强度的正相关性, 阐明其Brönsted酸性起源于Ge原子对构型中的Ge-OH基团.

综上, 本工作以双季铵盐为结构导向剂设计合成的富锗型锗硅酸盐具有温和的Brönsted酸性及较强的结构稳定性, 在正己烷裂解和MTO转化中表现出良好的轻质烯烃选择性和催化剂稳定性, 这为硅锗沸石材料的Brönsted酸性研究以及拓展其作为固体酸催化剂的应用提供了新视角.

关键词: 锗硅沸石, IWW, 布朗斯特酸位, 骨架锗羟基, 烷烃裂解, 甲醇制烯烃

Abstract:

Constructing new Brönsted acid sites within zeolitic materials holds paramount importance for the advancement of solid-acid catalysis. Zeo-type germanosilicates, a class of metallosilicates with a neutral framework composed of tetravalent Ge and Si oxygen tetrahedrons, are conventionally considered not to generate Brönsted acid sites. Herein, we disclose an abnormal phenomenon with Ge-rich IWW-type germanosilicate (IWW-A) as an example that Ge-enriched germanosilicates are featured by mild Brönsted acidity. Using the art-of-state density functional theory calculation, 19F magic angle spinning nuclear magnetic resonance, microcalorimetric and ammonia infrared mass spectrometry- temperature-programmed desorption characterizations, the nature of germanosilicate's Brönsted acidity has been demonstrated to be closely related to the neighboring framework Ge-hydroxyl pairs. Besides, the contribution of Ge-OH groups to Brönsted acidity and the role of Ge-pair structure for maintaining mild acid strength have been elucidated. In catalytic cracking of n-hexane and methanol-to-olefins reaction, the IWW-A germanosilicate exhibit high light olefins selectivity, good recyclability and low carbon deposition, outperforming the benchmark zeolite catalyst, ZSM-5 aluminosilicate.

Key words: Germanosilicates, IWW, Brönsted acidity, Framework Ge-hydroxyl, Alkane cracking, Methanol-to-olefins