催化学报 ›› 2025, Vol. 78: 215-228.DOI: 10.1016/S1872-2067(25)64806-6

• 论文 • 上一篇    下一篇

ZSM-5催化甲醇制烯烃反应积碳贯穿孔道交联生长机理: 从分子结构、时空动态到催化剂失活

王男a, 吴一墨a, 韩晶峰a, 张亚楠a,f, 王莉b, 于洋b, 张嘉兴c, 熊昊d, 陈晓d, 周易达a, 王韩丽新e,f, 徐兆超e, 徐舒涛a, 郭新闻c, 魏飞d, 魏迎旭a,*(), 刘中民a,f,*()   

  1. a中国科学院大连化学物理研究所, 低碳催化技术国家工程研究中心, 辽宁大连 116023
    b中国科学院大连化学物理研究所, 分析化学分离科学重点实验室, 辽宁大连 116023
    c大连理工大学化工学院, 精细化工国家重点实验室, 辽宁大连 116024
    d清华大学化学工程系, 绿色化学反应工程与技术北京市重点实验室, 北京 100084
    e中国科学院大连化学物理研究所, 分析化学分离科学重点实验室, 辽宁大连 116023
    f中国科学院大学, 北京 100049
  • 收稿日期:2025-07-02 接受日期:2025-08-05 出版日期:2025-11-18 发布日期:2025-10-14
  • 通讯作者: *电子信箱: weiyx@dicp.ac.cn (魏迎旭),
  • 基金资助:
    国家自然科学基金(22288101);国家自然科学基金(21991090);中国科学院杰出研究助理基金项目

Channel-passing growth mechanism of coke in ZSM-5 catalyzed methanol-to-hydrocarbons conversion: From molecular structure, spatiotemporal dynamics to catalyst deactivation

Nan Wanga, Yimo Wua, Jingfeng Hana, Yanan Zhanga,f, Li Wangb, Yang Yub, Jiaxing Zhangc, Hao Xiongd, Xiao Chend, Yida Zhoua, Hanlixin Wange,f, Zhaochao Xue, Shutao Xua, Xinwen Guoc, Fei Weid, Yingxu Weia,*(), Zhongmin Liua,f,*()   

  1. aNational Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bDivision of Energy Research Resources, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    cState Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
    dBeijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    eCAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    fUniversity of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-07-02 Accepted:2025-08-05 Online:2025-11-18 Published:2025-10-14
  • Contact: *E-mail: weiyx@dicp.ac.cn (Y. Wei), liuzm@dicp.ac.cn (Z. Liu).
  • Supported by:
    National Natural Science Foundation of China(22288101);National Natural Science Foundation of China(21991090);Distinguished Research Assistant Funding Project of Chinese Academy of Sciences(CAS)

摘要:

分子筛催化剂在石油、煤、天然气化工及塑料、CO2转化等领域具有重要应用, 但其快速积碳失活问题严重制约了工业催化过程高效、可持续发展. 尽管过去几十年对催化剂积碳的形成机制进行了大量研究, 但关于多环芳烃(PAHs)在分子筛孔道中的分子结构、空间落位及生长路径仍缺乏清晰认识. 尤其是在分子尺度上, PAHs在分子尺寸限域空间内的迁移和聚集行为如何影响催化剂的宏观性能尚不明确. 因此, 揭示积碳的分子结构及其在沸石孔道中的动态演化过程, 对于理解催化剂失活机制和设计抗积碳分子筛催化剂具有重要意义.

本研究以工业上广泛应用的ZSM-5沸石为模型催化剂, 通过结合高分辨基质辅助激光解吸电离傅里叶变换离子回旋共振质谱与多维度化学成像技术和理论手段, 首次在原子分辨率和单晶尺度上揭示了甲醇制烃类(MTH)反应中积碳贯穿孔道交联生长机理. 研究团队开发了多尺度光谱工具箱, 包括红外显微光谱、结构光照明显微镜、飞行时间二次离子质谱和原子分辨的积分差分相位衬度-扫描透射电子显微技术, 实现了对PAHs分子结构、空间定位及动态演化的全面解析-实验结果表明, PAHs在ZSM-5孔道中通过孔道交叉处连接形成多核链状结构, 其生长受沸石分子尺度受限微环境的模板效应驱动. 高分辨质谱结合同位素标记分析显示, PAHs的质量分布呈现离散分段特征, 表明其通过孔道贯穿的生长模式, 即芳烃分子核在相邻孔道交叉处通过C4或苯、萘单元逐步连接. 结合同位素标记和理论计算, 研究确定了PAHs的具体分子构型, 发现其优先沿ZSM-5直孔道排列, 形成热力学稳定的链状结构. 此外, 原子分辨成像直接观测到PAHs分子在孔道中的填充行为及空间落位, 证实了其与沸石骨架的紧密相互作用. 更重要的是, PAHs的通道传递生长机制具有普适性, 在ZSM-22(1D孔道)和ZSM-35(2D孔道)等其他孔道、笼结构沸石中同样存在. 这一机制揭示了PAHs在受限空间中普遍的动态演化路径, 从初始的可溶性芳烃到最终的不溶性多核链状焦炭, 逐步导致催化剂孔道堵塞和失活. 建立的失活模型更新了对积碳失活的认识, 积碳-分子筛互锁相的传热、传质、电子/质子传输、亲/疏水性质发生改变是催化剂失活的本质.

综上, 本文首次从分子尺度揭示了ZSM-5催化MTH反应中积碳贯穿孔道交联生长机理, 建立了积碳结构-落位-演变路径的完整机理模型, 为理解沸石催化剂失活提供了新视角. 研究提出的多尺度失活模型不仅解决了长期困扰学术界的积碳形成难题, 还为设计抗积碳沸石催化剂提供了理论依据和全新思路. 此外, 本研究发展的多尺度表征方法也为其他分子尺寸、纳米尺度受限体系的主客体化学研究提供了重要参考.

关键词: 分子筛, 甲醇制烃类, 积碳表征, 失活, 反应机理

Abstract:

Coke formation is the primary cause of zeolite deactivation in industrial catalysis, yet the structural identity, spatial location and molecular routes of polycyclic aromatic hydrocarbons (PAHs) within confined zeolite pores remain elusive. Here, by coupling matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry with multi-dimensional chemical imaging, we unveil a channel-passing growth mechanism for PAHs in ZSM-5 zeolites during methanol conversion through identifying the molecular fingerprints of larger PAHs, pinpointing and visualizing their 3D location and spatiotemporal evolution trajectory with atomic resolution and at both channel and single-crystal scales. Confined aromatic entities cross-link with each other, culminating in multicore PAH chains as the both thermodynamically favorable and kinetically trapped host-guest entanglement wrought and templated by the defined molecular-scale constrained microenvironments of zeolite. The mechanistic concept proves general across both channel- and cage-structured zeolite materials. Our multiscale deactivating model based on the full-picture coke structure-location correlations—spanning atom, molecule, channel/cage and single crystal scales—would shed new light on the intertwined chemical and physical processes in catalyst deactivation. This work not only resolves long-standing puzzles in coke formation but also provides design principles for coke-resistant zeolites. The methods and insights would rekindle interest in confinement effects and host-guest chemistry across broader chemistry fields beyond catalysis and carbon materials.

Key words: Zeolites, Methanol-to-hydrocarbons, Coke characterization, Deactivation, Reaction mechanisms