催化学报 ›› 2025, Vol. 78: 303-312.DOI: 10.1016/S1872-2067(25)64785-1

• 论文 • 上一篇    下一篇

解耦铂钌增强氢氧化活性机制: 界面水环境与反应坐标的动态匹配

刘进a,b, 谢卓洋a,b, 向琼a,b, 陈霞a,b, 李孟婷a,b, 刘佳玮c, 李莉a,b,*(), 魏子栋a,b   

  1. a重庆大学化学化工学院, 重庆400044, 中国
    b重庆大学先进电能源化学研究中心, 重庆400044, 中国
    c新加坡科技研究局化学、能源与环境可持续性研究所, 新加坡
  • 收稿日期:2025-05-15 接受日期:2025-07-07 出版日期:2025-11-18 发布日期:2025-10-14
  • 通讯作者: *电子信箱: liliracial@cqu.edu.cn (李莉).
  • 基金资助:
    国家重点研发计划(2021YFA1502000);国家自然科学基金(52021004);国家自然科学基金(22179013);国家自然科学基金(22090030)

Decoupling the HOR enhancement on PtRu: Dynamically matching interfacial water to reaction coordinates

Jin Liua,b, Zhuoyang Xiea,b, Qiong Xianga,b, Xia Chena,b, Mengting Lia,b, Jiawei Liuc, Li Lia,b,*(), Zidong Weia,b   

  1. aSchool of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
    bState Key Laboratory of Advanced Chemical Power Sources (Chongqing University), Chongqing 400044, China
    cInstitute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 627833 Singapore, Singapore
  • Received:2025-05-15 Accepted:2025-07-07 Online:2025-11-18 Published:2025-10-14
  • Contact: *E-mail: liliracial@cqu.edu.cn (L. Li).
  • Supported by:
    National Key Research and Development Program of China(2021YFA1502000);National Natural Science Foundation of China(52021004);National Natural Science Foundation of China(22179013);National Natural Science Foundation of China(22090030)

摘要:

氢氧化反应(HOR)是碱性阴离子交换膜燃料电池(AEMFC)中的关键阳极反应, 但其在碱性条件下的反应动力学显著慢于酸性条件, 成为限制器件性能的主要瓶颈. 尽管PtRu合金催化剂在碱性HOR中表现出优异的活性, 但其原子尺度的增强机制仍存在争议: 有研究认为Ru掺杂优化了氢结合能, 也有观点指出OH物种的双功能作用和催化剂/电解质界面的水结构调控是关键因素. 因此, 深入系统地研究碱性条件下PtRu合金提升HOR性能的机制, 有助于推动高性能HOR催化剂的设计与应用.

本文利用密度泛函理论、从头算分子动力学和微动力学模拟, 系统地研究了影响催化剂/电解质界面HOR活性的关键因素, 包括活性位点分布、物种吸附行为及溶剂重组效应, 并评估了这些因素对活性的贡献. 首先, 通过评估电子结构、关键物种吸附和双电层结构, 研究了碱性溶液中Pt(111)和PtRu(111)表面活性位点的分布; 随后, 根据活性位点分布和物种浓度, 计算了HOR每个基元步骤的反应能垒, 比较催化剂的本征活性; 进而分析了物种扩散、吸附和溶剂重组对HOR活性的贡献, 阐明了PtRu性能优于Pt的原因. 研究结果发现, HOR遵循Tafel-Volmer机制, PtRu(111)-alkali催化HOR活性优于Pt(111)-alkali. 其中, Volmer步骤为速度控制步骤, 其吸附氢(Had)与水分子协同反应路径(Had + [HO···H···OH] = 2H2O + e + *)表现出最大的能垒差异. 机理分析结果表明, 尽管适中的氢结合能(HBE)与Ru对OH物种的强吸附均对催化性能提升有促进作用, 但最关键的提升来源于PtRu(111)-alkali中显著降低的溶剂重组能. PtRu合金中Pt与Ru在表面形成空间分离的活性位点, Pt主要吸附氢原子, 而Ru优先吸附OH和水分子. 该构型增强了Had与OH/水之间的空间耦合, 提高了“H-up”取向水分子的比例, 并在内亥姆霍兹层形成了适度连续的氢键网络. 这些作用最大程度的降低了质子在HOR反应路径上迁移时对溶剂环境的扰动, 从而有效降低了溶剂重组能, 实现了界面水结构与反应坐标之间的动态匹配, 显著增强了HOR本征活性.

综上, 本研究揭示了碱性条件下PtRu合金增强HOR活性的微观机制, 强调了界面水分子取向与氢键网络对电催化反应动力学的重要调控作用, 为今后AEMFC阳极催化剂的优化设计提供了理论依据, 并为开发高效低铂催化材料指明了方向.

关键词: 氢氧化反应, 铂钌合金, 催化剂/电解质界面, 双电层, 氢键网络

Abstract:

Platinum-ruthenium alloys (PtRu) represent state-of-the-art alkaline hydrogen oxidation reaction (HOR) catalysts, yet the atomic-scale origin of their superiority over pure Pt remains incompletely understood. Here, we employ density functional theory calculations, ab initio molecular dynamics simulations, and microkinetic modeling on Pt(111) and PtRu(111) surfaces to systematically investigate the key factors, including active sites distribution, species adsorption, and solvent reorganization, that affect the HOR activity and decouple their contributions. The results reveal that while the moderate hydrogen binding energy and improved hydroxyl (OH) species adsorption both contribute to the enhanced activity, the dominant factor is the substantial reduction in solvent reorganization energy on the PtRu(111). This is facilitated by the spatial separation of active sites: Pt atoms preferentially stabilize adsorbed hydrogen, while Ru atoms strongly bind OH and interfacial water molecules. This configuration increases the probability of hydrogen interacting with OH/water and enhances the fraction of "H-up" water molecules, forming a well-organized hydrogen bond network within the electric double layer. The dynamically compatible interfacial water structure and HOR coordination promote H desorption and proton transfer in the Volmer step, thereby accelerating the HOR kinetics.

Key words: Hydrogen oxidation reaction, PtRu alloys, Catalyst/electrolyte interface, Electric double layer, Hydrogen bond network