催化学报 ›› 2013, Vol. 34 ›› Issue (11): 2098-2109.DOI: 10.1016/S1872-2067(12)60716-5

• 研究论文 • 上一篇    下一篇

“先核后壳”和“先壳后核”的简便途径制备M@SiO2(M=Ag,Au,Pt)纳米核壳结构及其催化活性

何圣超, 费兆阳, 李雷, 孙博, 冯新振, 季伟捷   

  1. 南京大学化学化工学院介观化学教育部重点实验室, 江苏南京210093
  • 收稿日期:2013-08-30 修回日期:2013-09-22 出版日期:2013-10-18 发布日期:2013-10-18
  • 通讯作者: Weijie Ji
  • 基金资助:

    国家自然科学基金(21173118);江苏省自然科学基金(BK2011439);高等学校博士学科点专项科研基金(20110091110023);国家高技术研究发展计划(863计划,2013AA031703).

Synthesis and catalytic activity of M@SiO2 (M=Ag, Au, and Pt) nanostructures via “core to shell” and “shell then core” approaches

Shengchao He, Zhaoyang Fei, Lei Li, Bo Sun, Xinzhen Feng, Weijie Ji   

  1. Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, China
  • Received:2013-08-30 Revised:2013-09-22 Online:2013-10-18 Published:2013-10-18
  • Contact: Weijie Ji
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21173118), the Natural Science Foundation of Jiangsu Province (BK2011439), the Specialized Reaearch Fund for the Doctoral Program of High Education (20110091110023), and the National High Technology Research and Development Program of China (863 Program, 2013AA031703).

摘要:

采用简便的“先核后壳”和“先壳后核”途径制备了M@SiO2 (M=Ag, Au, Pt)核壳结构. 采用“先核后壳”途径时,金属内核可以控制在6 -9 nmm, 粒径分布均匀, SiO2壳层织构可调. 该途径制备过程简便, 无需高速离心分离, 可有效节约制备成本. 由该途径制得的Au@mSiO2中纳米Au的热稳定性高, 经550 ℃空气焙烧后仍能保持高的CO氧化性能(T100=235 ℃). 由“先壳后核”途径制得的核壳结构内核金属粒子也可以控制在< 10 nmm, 粒径分布均匀, 且SiO2壳层孔隙率可以预调, 即使在液相中也可有效消除对硝基苯酚反应物分子的扩散限制, 并于室温下将其还原为对氨基苯酚. 两种途径所得的核壳结构均呈高单分散态. 使用含有不同有机官能团的硅源可对介孔SiO2壳层进行进一步改性, 拓展应用领域, 因而具有很好的潜在应用前景.

关键词: 核壳结构, 银, 金, 铂, 纳米粒子, 二氧化硅, 一氧化碳氧化, 对硝基酚还原

Abstract:

M@SiO2 (M = Ag, Au, and Pt) core-shell nanostructures were prepared by the "core to shell" and "shell then core" approaches. In the former, the metal core size could be controlled in the 6-9 nm range with a narrow size distribution, and the shell porosity was tunable. The preparation was straightforward and efficient, without requiring specialized high-speed centrifugation. Au@SiO2 containing mesoporous SiO2 shells (Au@meso-SiO2) exhibited good thermal stability and high CO oxidation activity (T100 = 235 ℃) even after being subjected to calcination in air at 550 ℃. In the latter approach, the core size could be controlled at < 10 nm with a narrow size distribution, and the shell porosity was tunable to a fine degree. 4-Nitrophenol was readily reduced at room temperature in the presence of Au@meso-SiO2 obtained through the "shell then core" approach. The SiO2 shell mesoporosity minimized the diffusion limitation of 4-nitrophenol. The core-shell structures from both approaches were uniformly dispersed. Employing Si sources with differing functionality allowed the SiO2 shell and metal core properties to be modified in these approaches, which is beneficial for application.

Key words: Core-shell structure, Silver, Gold, Platinum, Nanoparticle, Silica, CO oxidation, 4-Nitrophenol reduction