催化学报 ›› 2019, Vol. 40 ›› Issue (5): 733-743.DOI: 10.1016/S1872-2067(18)63204-8

• 论文 • 上一篇    下一篇

MnOx/CeO2纳米棒催化剂在低温NH3-SCR反应中的阳离子(Zr4+,Al3+,Si4+)掺杂效应

姚小江a, 曹俊a, 陈丽a, 亢科科a, 陈阳a, 田密a, 杨复沫b,c   

  1. a 中国科学院重庆绿色智能技术研究院水库水环境重点实验室大气环境研究中心, 重庆 400714;
    b 四川大学建筑与环境学院烟气脱硫国家工程研究中心, 四川成都 610065;
    c 中国科学院城市环境研究所区域大气环境研究卓越创新中心, 福建厦门 361021
  • 收稿日期:2018-10-24 修回日期:2018-11-22 出版日期:2019-05-18 发布日期:2019-03-30
  • 通讯作者: 姚小江
  • 基金资助:

    国家自然科学基金(21876168,21507130);中国科学院青年创新促进会项目(2019376);重庆市科学技术委员会项目(cstc2016jcyjA0070,cstckjcxljrc13).

Doping effect of cations (Zr4+, Al3+, and Si4+) on MnOx/CeO2 nano-rod catalyst for NH3-SCR reaction at low temperature

Xiaojiang Yaoa, Jun Caoa, Li Chena, Keke Kanga, Yang Chena, Mi Tiana, Fumo Yangb,c   

  1. a Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
    b National Engineering Research Center for Flue Gas Desulfurization, School of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China;
    c Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China
  • Received:2018-10-24 Revised:2018-11-22 Online:2019-05-18 Published:2019-03-30
  • Contact: 10.1016/S1872-2067(18)63204-8
  • Supported by:

    This work was supported by National Natural Science Foundation of China (21876168, 21507130), Youth Innovation Promotion Association of CAS (2019376), and the Chongqing Science & Technology Commission (cstc2016jcyjA0070, cstckjcxljrc13).

摘要:

低温脱硝技术由于具有无需再加热烟气、方便燃煤电厂脱硝改造以及适用于一些烟气温度较低的非电力行业脱硝场合等优点,吸引了越来越多研究者的关注.低温脱硝催化剂是该技术中最关键的单元,因此其配方开发及相关工作已成为近年来的研究热点之一.
商业化V2O5-WO3/TiO2催化剂在300-400℃的固定源烟气脱硝中表现出优异的性能,然而其低温脱硝性能却差强人意.并且,V2O5具有生物毒性,会造成二次污染.因此,低温脱硝催化剂的开发主要集中在环境友好的非钒基催化剂上.其中,MnOx基催化剂由于具有优异的低温脱硝性能而成为重点研究对象.特别是MnOx/CeO2催化剂由于CeO2良好的氧化还原性能和较高的储释氧容量,引起了低温脱硝领域越来越多研究者的兴趣.然而,众所周知,CeO2的比表面积和热稳定性并不令人满意.幸运的是,研究表明,阳离子掺杂可有效地克服CeO2的上述缺点.
此外,随着纳米材料制备科学与技术的发展,不同形貌的CeO2已经能可控合成.研究表明,CeO2纳米棒比其它形貌的CeO2更适合用作载体,因为CeO2纳米棒主要暴露的{110}晶面易于形成氧空位以及与表面分散组分产生强相互作用.因此,在本工作中,我们在CeO2纳米棒的晶格中掺入热稳定的Zr4+,Al3+,Si4+等阳离子以提高其比表面积和热稳定性,并以该CeO2纳米棒为载体负载MnOx,考察了Zr4+,Al3+,Si4+等阳离子掺杂对MnOx/CeO2纳米棒催化剂低温脱硝性能的影响,筛选出最佳的掺杂离子.
对制备的样品进行了透射电子显微镜、高分辨透射电子显微镜、X射线衍射、拉曼光谱、氮气物理吸附、氢气程序升温还原、氨气程序升温脱附、氨气吸附原位漫反射红外光谱和X射线光电子能谱等一系列表征分析,并利用氨气-选择性催化还原(NH3-SCR)反应评价了其脱硝性能和抗水抗硫性能.结果表明,Si4+掺杂的MnOx/CeO2纳米棒(MnOx/CS-NR)催化剂具有最多的氧空位、表面酸性位和Mn4+因而表现出最佳的脱硝活性.由于其氧化还原性能适当减弱,有效地抑制了氨气的非选择性催化氧化,从而表现出最低的N2O生成量.此外,MnOx/CS-NR催化剂还显示出最佳的抗水抗硫性能.综上所述,Si4+是MnOx/CeO2纳米棒催化剂的最佳掺杂离子.

关键词: MnOx/CeO2纳米棒催化剂, 掺杂效应, 氧空位, 表面酸性, 低温氨气选择性催化还原反应

Abstract:

Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano-rods (i.e., CeO2-NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano-rods were used as supports to prepare MnOx/CeO2-NR, MnOx/CZ-NR, MnOx/CA-NR, and MnOx/CS-NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction, Raman and N2-physisorption analyses, hydrogen temperature-programmed reduction, ammonia temperature-programmed desorption, in situ diffuse reflectance infrared Fourier-transform spectroscopic analysis of the NH3 adsorption, and X-ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3-selective catalytic reduction (NH3-SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS-NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS-NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2-NR catalyst.

Key words: MnOx/CeO2 nano-rod catalyst, Doping effect, Oxygen vacancy, Surface acidity, Low-temperature NH3-SCR reaction