催化学报 ›› 2020, Vol. 41 ›› Issue (4): 719-729.DOI: 10.1016/S1872-2067(19)63395-4

• 论文 • 上一篇    

B修饰的ZrO2及其制备pH值对PtSn/B-ZrO2丙烷脱氢反应性能的影响

纪中海a,b, 苗登云a, 高丽君a, 潘秀莲a, 包信和a   

  1. a 中国科学院大连化学物理研究所催化基础国家重点实验室, 辽宁大连 116023;
    b 中国科学院大学, 北京 100049
  • 收稿日期:2019-09-30 修回日期:2019-10-08 出版日期:2020-04-18 发布日期:2019-12-12
  • 通讯作者: 纪中海

Effect of pH on the catalytic performance of PtSn/B-ZrO2 in propane dehydrogenation

Zhonghai Jia,b, Dengyun Miaoa, Lijun Gaoa, Xiulian Pana, Xinhe Baoa   

  1. a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
    b University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-09-30 Revised:2019-10-08 Online:2020-04-18 Published:2019-12-12

摘要: 丙烯作为一种重要的石油化工基础原料,传统上是从石脑油蒸汽裂解或催化裂化过程中作为副产物生产的.随着原油的枯竭和页岩气开发技术的成熟,通过乙烷蒸汽裂解制备乙烯更具吸引力并已得到广泛的工业应用,但该路线乙烯选择性高,而副产物丙烯数量有限.为满足不断增加的丙烯需求量,利用油田气和页岩气中低附加值的丙烷为原料,将其直接脱氢制丙烯(PDH)具有重要的现实意义.目前已开发成功的PDH技术采用的催化剂主要为负载PtSn型催化剂和Cr基催化剂.其中,Pt基催化剂较Cr基催化剂更加环境友好,因此得到了更广泛的应用.由于Pt元素的昂贵和稀有,制备低Pt含量和良好性能的催化剂极具吸引力.UOP Oleflex工艺开发的最新一代催化剂DEH-16仅含有0.3 wt% Pt,相对于前一代催化剂Pt含量降低30%.然而,许多文献报道,随着Pt含量的降低,催化剂的稳定性很容易恶化,降低Pt含量并保持催化剂性能仍具有一定的挑战.研究表明,含有更多Lewis酸性位点和更少Brönsted酸位点的催化剂显示出较好的丙烷脱氢活性和丙烯选择性.此外,源自缺陷位或配位不饱和位的Lewis酸性位也可为负载的金属颗粒提供锚定位点.BASF对ZrO2作为载体的丙烷脱氢催化剂进行了广泛研究,但其催化剂尚未完全商业化.有文献报道,ZrO2负载的PtSn催化剂在脱氢反应中的稳定性较差.将元素硼(B)加入到ZrO2中可以极大地抑制Brönsted酸性而提高Lewis酸量和酸强度,因此我们推测含有适量配位不饱和Zr位点的ZrO2作为PtSn丙烷脱氢催化剂载体可能具有优异的性能.载体的合成pH值对催化剂PDH性能也会有影响.然而,目前还没有硼改性的ZrO2(B-ZrO2)合成pH值对PDH催化性能影响的研究.
本文研究了B-ZrO2的合成pH值(9,10和11)对PtSn/B-ZrO2在丙烷脱氢反应中催化性能的影响.Py-IR结果表明各pH值下合成的B-ZrO2均只有Lewis酸,NH3-TPD结果则表明B-ZrO2的Lewis酸量和强度随合成pH值的增加而增加.XPS结果显示,载体对Pt和Sn电子性质的影响不容忽视.由于OSC与CO氧化活性之间没有线性关系,因此Pt和Sn之间的相互作用程度在CO氧化反应中可能起主要作用,并有如下递增趋势:PtSn/B-ZrO2-9 < PtSn/B-ZrO2-11 < PtSn/B-ZrO2-10.由于PtSn/B-ZrO2-10中Sn0含量适中,适中的被负载金属与载体间的相互作用强度有利于Pt和Sn之间更紧密的相互作用,这可能是该催化剂丙烷脱氢催化活性和稳定性均较好的主要原因.

关键词: 丙烷脱氢, Pt-Sn, 丙烯, 载体, 稳定性

Abstract: Boron-modified ZrO2 (B-ZrO2) was synthesized under various pH values (9, 10, and 11) and used as the supports of PtSn catalysts (PtSn/B-ZrO2-x) for non-oxidative dehydrogenation of propane. The NH3-TPD and pyridine IR show that only Lewis acid is present and the acid strength increases with the synthesis pH. PtSn/B-ZrO2-10 exhibits the best catalytic performance with an initial propane conversion of 36% and a deactivation rate constant (kd) of 0.0127 h-1. The XPS results indicate that the electronic properties of Pt and SnOx are affected not only by their interaction but also by the interaction with support. After a careful analysis of the oxygen storage capacity and activity in CO oxidation, it is hypothesized that the interaction between Pt and Sn becomes stronger following the order:PtSn/B-ZrO2-9 < PtSn/B-ZrO2-11 < PtSn/B-ZrO2-10. The characterization with TPO and Raman on spent catalysts exhibits that more hydrogen deficient coke forms on the support and less coke deposits on the metal surface of PtSn/B-ZrO2-10. The results reveal that the interaction between Pt and Sn is influenced by their respective interaction with the support and a moderate interaction between the metal species and the support is desired.

Key words: Propane dehydrogenation, Platinum-tin, Propylene, Support, Stability