催化学报 ›› 2022, Vol. 43 ›› Issue (3): 731-754.DOI: 10.1016/S1872-2067(21)63802-0
刘军辉a,*(), 宋亚坤a, 郭旭明a, 宋春山b,c,#(
), 郭新闻c,$(
)
收稿日期:
2021-01-30
修回日期:
2021-01-30
出版日期:
2022-03-18
发布日期:
2022-02-18
通讯作者:
刘军辉,宋春山,郭新闻
基金资助:
Junhui Liua,*(), Yakun Songa, Xuming Guoa, Chunshan Songb,c,#(
), Xinwen Guoc,$(
)
Received:
2021-01-30
Revised:
2021-01-30
Online:
2022-03-18
Published:
2022-02-18
Contact:
Junhui Liu, Chunshan Song, Xinwen Guo
摘要:
化石燃料的广泛使用导致大气中CO2的排放量急剧增加, 进而引起全球变暖和海洋酸化等一系列问题. CO加氢(费托合成)反应是利用非石油来源的原料生产液体燃料和化学品的一种重要途径. 同时, 利用可再生的H2将CO2转化为高附加值的产品有利于减少对化石燃料的依赖, 减轻由于大气中CO2浓度过高带来的负面影响. 开发新型、高效、稳定的催化剂是费托合成和CO2加氢制高附加值烃的关键因素之一. Fe基、Co基和Ru基催化剂是费托合成中常用的催化剂. 而在CO2加氢反应中, Co基和Ru基催化剂上主要发生甲烷化反应, 几乎没有长链烃生成. Fe基催化剂在费托合成和CO2加氢反应中均表现出优异的催化生成长链烃性能. 同时, Fe储量丰富和价格便宜的特点也促进Fe基催化剂在两个反应中的广泛应用.
一般认为, 在Fe基催化剂上CO2通过逆水煤气变换反应生成CO, CO通过费托合成反应继续加氢生成烃类. 因此, CO2加氢反应和费托合成反应有相似之处, 同时也有较大的区别. 本文从活性相、助剂和载体的角度综述了各组分在Fe基催化剂催化CO/CO2加氢反应中的作用, 总结了其中的区别与联系. 催化剂在反应中会发生复杂的相变过程, 形成多种铁物种; 其中, 碳化铁(χ-Fe5C2, ε-Fe2C, Fe7C3和θ-Fe3C)在费托合成反应中是C‒C偶联的活性相, 但对于θ-Fe3C现还存在一些争议. 在CO2加氢反应中Fe3O4催化逆水煤气变换反应, 碳化铁催化CO加氢反应. 金属助剂对CO/CO2加氢反应的促进作用较为相似, 在两个反应中碱金属的促进作用最为明显. 费托合成反应对载体有较强的适应性, 而CO2加氢反应对载体敏感性较强, Al2O3, ZrO2和碳材料载体效果较好.
本文还总结了近些年来基于对活性相、助剂和载体的深入理解设计制备的一些新型催化剂及其在费托合成和CO2加氢反应中的应用, 包括具有新颖结构的催化剂、金属-有机骨架衍生催化剂以及与沸石分子筛结合的双功能催化剂. 最后, 还分析了目前Fe基催化剂在费托合成和CO2加氢反应应用中所面临的问题和挑战, 并对未来的发展趋势进行了展望.
刘军辉, 宋亚坤, 郭旭明, 宋春山, 郭新闻. 铁基催化剂在COx加氢制高附加值烃反应中的应用[J]. 催化学报, 2022, 43(3): 731-754.
Junhui Liu, Yakun Song, Xuming Guo, Chunshan Song, Xinwen Guo. Recent advances in application of iron-based catalysts for COx hydrogenation to value-added hydrocarbons[J]. Chinese Journal of Catalysis, 2022, 43(3): 731-754.
Fig. 2. Qualitative interpretation of an ab initio atomistic thermodynamics study of the iron carbide structures. Reproduced from Ref. [76] with permission from the American Chemical Society.
Fig. 3. Schematic illustration of the formation mechanism of Fe5C2 nanoparticles. Reproduced from Ref. [78] with permission from the American Chemical Society.
Fig. 4. Catalytic activity of iron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) in FTS. Reproduced from Ref. [91] with permission from the American Chemical Society.
Fig. 6. Schematic illustration of CO2 hydrogenation over Fe and Co catalysts. Reproduced from Ref. [118] with permission from Royal Society of Chemistry.
Catalyst | H2/CO | T (°C) | P (MPa) | GHSV (mL h-1 g-1) | CO conv. (%) | CO2 sel. (%) | Product distribution (%) | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2‒C4= | C2‒C40 | C5+ | ||||||||
FeSi | 2 | 260 | 1.5 | 2000 | 53.0 | 32.4 | 24.9 | 0.46 a | 0.46 a | 23.7 | [ |
LiFeSi | 2 | 260 | 1.5 | 2000 | 36.1 | 25.4 | 17.5 | 0.59 a | 0.59 a | 31.3 | [ |
NaFeSi | 2 | 260 | 1.5 | 2000 | 50.1 | 32.0 | 16.9 | 0.63 a | 0.63 a | 35.4 | [ |
KFeSi | 2 | 260 | 1.5 | 2000 | 69.2 | 43.3 | 14.0 | 0.63 a | 0.63 a | 46.1 | [ |
RbFeSi | 2 | 260 | 1.5 | 2000 | 79.0 | 43.7 | 15.9 | 0.61 a | 0.61 a | 45.3 | [ |
CsFeSi | 2 | 260 | 1.5 | 2000 | 73.3 | 46.3 | 15.1 | 0.64 a | 0.64a | 45.4 | [ |
Fe/rGO | 1 | 340 | 2.0 | 42000 | 342 b | 49.7 | 42.3 | 33.2 | 23.4 | 1.1 | [ |
FeK2/rGO | 1 | 340 | 2.0 | 60000 | 545 b | 49.0 | 22.0 | 63.7 | 6.4 | 7.9 | [ |
FeMg/rGO | 1 | 340 | 2.0 | 24000 | 247 b | 40.7 | 35.6 | 33.0 | 26.9 | 4.5 | [ |
FeMgK2/rGO | 1 | 340 | 2.0 | 132000 | 1338 b | 40.8 | 20.3 | 65.0 | 6.2 | 8.5 | [ |
6 wt% Mn/Fe3O4 | 2 | 320 | 1.0 | 5 c | 41.5 | 37.8 | 9.7 | 60.1 | 6.5 | 23.7 | [ |
FeZn | 65:24 | 350 | 2.0 | 3000 | 95.09 | 15.79 | 25.60 | 53.32 | 7.72 | 13.36 | [ |
KFe/KIT-6(B5) | 2 | 350 | 2.0 | 4000 | 70.8 | — | 16.0 | 6.7 | 8.4 | 68.9 | [ |
Fe/CNF | 1 | 340 | 2.0 | — | 29.8 b | — | 13 | 52 | 12 | 18 | [ |
Fe/α-Al2O3 | 1 | 340 | 2.0 | — | 13.5 b | — | 11 | 53 | 6 | 21 | [ |
FexN-in-450(CNT) | 1 | 300 | 0.5 | 15000 | 960.6 b | 38.0 | 27.7 | 35.2 | 13.5 | 22.5 | [ |
Fe/NG-16.4 | 1 | 340 | 0.5 | 600 | 21.1 | 35.1 | 21.4 | 49.6 | 5.4 | 19.8 | [ |
Fe/α-Al2O3-H-8S | 1 | 350 | 0.1 | 9000 | 0.9 | 43 | 29 | 68 | 2 | ~1 | [ |
Table 1 Summary of catalytic performance over iron-based catalysts with various promoters and supports for FTS.
Catalyst | H2/CO | T (°C) | P (MPa) | GHSV (mL h-1 g-1) | CO conv. (%) | CO2 sel. (%) | Product distribution (%) | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2‒C4= | C2‒C40 | C5+ | ||||||||
FeSi | 2 | 260 | 1.5 | 2000 | 53.0 | 32.4 | 24.9 | 0.46 a | 0.46 a | 23.7 | [ |
LiFeSi | 2 | 260 | 1.5 | 2000 | 36.1 | 25.4 | 17.5 | 0.59 a | 0.59 a | 31.3 | [ |
NaFeSi | 2 | 260 | 1.5 | 2000 | 50.1 | 32.0 | 16.9 | 0.63 a | 0.63 a | 35.4 | [ |
KFeSi | 2 | 260 | 1.5 | 2000 | 69.2 | 43.3 | 14.0 | 0.63 a | 0.63 a | 46.1 | [ |
RbFeSi | 2 | 260 | 1.5 | 2000 | 79.0 | 43.7 | 15.9 | 0.61 a | 0.61 a | 45.3 | [ |
CsFeSi | 2 | 260 | 1.5 | 2000 | 73.3 | 46.3 | 15.1 | 0.64 a | 0.64a | 45.4 | [ |
Fe/rGO | 1 | 340 | 2.0 | 42000 | 342 b | 49.7 | 42.3 | 33.2 | 23.4 | 1.1 | [ |
FeK2/rGO | 1 | 340 | 2.0 | 60000 | 545 b | 49.0 | 22.0 | 63.7 | 6.4 | 7.9 | [ |
FeMg/rGO | 1 | 340 | 2.0 | 24000 | 247 b | 40.7 | 35.6 | 33.0 | 26.9 | 4.5 | [ |
FeMgK2/rGO | 1 | 340 | 2.0 | 132000 | 1338 b | 40.8 | 20.3 | 65.0 | 6.2 | 8.5 | [ |
6 wt% Mn/Fe3O4 | 2 | 320 | 1.0 | 5 c | 41.5 | 37.8 | 9.7 | 60.1 | 6.5 | 23.7 | [ |
FeZn | 65:24 | 350 | 2.0 | 3000 | 95.09 | 15.79 | 25.60 | 53.32 | 7.72 | 13.36 | [ |
KFe/KIT-6(B5) | 2 | 350 | 2.0 | 4000 | 70.8 | — | 16.0 | 6.7 | 8.4 | 68.9 | [ |
Fe/CNF | 1 | 340 | 2.0 | — | 29.8 b | — | 13 | 52 | 12 | 18 | [ |
Fe/α-Al2O3 | 1 | 340 | 2.0 | — | 13.5 b | — | 11 | 53 | 6 | 21 | [ |
FexN-in-450(CNT) | 1 | 300 | 0.5 | 15000 | 960.6 b | 38.0 | 27.7 | 35.2 | 13.5 | 22.5 | [ |
Fe/NG-16.4 | 1 | 340 | 0.5 | 600 | 21.1 | 35.1 | 21.4 | 49.6 | 5.4 | 19.8 | [ |
Fe/α-Al2O3-H-8S | 1 | 350 | 0.1 | 9000 | 0.9 | 43 | 29 | 68 | 2 | ~1 | [ |
Fig. 7. Schematic illustration of syngas conversion over (a) the core-shell Fe3O4@MnO2 catalyst. Reproduced from Ref. [134] with permission from the American Chemical Society. (b) The Fe2O3@MnO2 spindle catalyst. Reproduced from Ref. [135] with permission from Elsevier.
Catalyst | H2/CO2 | T (°C) | P (MPa) | GHSV (mL h-1 g-1) | CO2 conv. (%) | Product sel. (%) | O/P | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CO | CH4 | C2‒C4= | C2‒C40 | C5+ | ||||||||
Fe/ZrO2 | 3 | 340 | 2.0 | 1200 | 32 | 25 | 52.5 | 0.1 | 21.8 | 0.7 | — | [ |
FeNa/ZrO2 | 3 | 340 | 2.0 | 1200 | 39 | 21 | 12.4 | 28.9 | 5.2 | 12.5 | — | [ |
FeCs/ZrO2 | 3 | 340 | 2.0 | 1200 | 39 | 16 | 17.4 | 28.8 | 6.4 | 14.3 | — | [ |
FeK/ZrO2 | 3 | 340 | 2.0 | 1200 | 42 | 15 | 11.9 | 29.0 | 6.1 | 19.0 | — | [ |
FeK/SiO2 | 3 | 340 | 2.0 | 1200 | 7.1 | 92 | 5.8 | 1.5 | 0.7 | 0.1 | — | [ |
FeK/Al2O3 | 3 | 340 | 2.0 | 1200 | 33 | 17 | 12.9 | 27.4 | 4.6 | 31.2 | — | [ |
FeK/TiO2 | 3 | 340 | 2.0 | 1200 | 21 | 55 | 8.4 | 16.3 | 2.7 | 10.6 | — | [ |
FeK/Meso-C | 3 | 340 | 2.0 | 1200 | 33 | 31 | 18.6 | 17.4 | 15.1 | 7.0 | — | [ |
FeK/CNT | 3 | 340 | 2.0 | 1200 | 35 | 12 | 19.2 | 27.4 | 4.6 | 31.2 | — | [ |
Fe3O4 | 3 | 320 | 3.0 | 2000 | 29.3 | 16.6 | 50.3 | 0.1 | 30.4 | 2.6 | 0.0 | [ |
FeNa(1.18) | 3 | 320 | 3.0 | 2000 | 40.5 | 13.5 | 13.7 | 40.3 | 6.5 | 26.0 | 6.2 | [ |
1Na/Fe | 3 | 320 | 3.0 | 2040 | 36.8 | 10.1 | 7.0 | 23.4 | 2.1 | 56.9 | 11.0 | [ |
5Mn-Na/Fe | 3 | 320 | 3.0 | 2040 | 38.6 | 11.7 | 11.8 | 30.2 | 4.0 | 42.1 | 7.5 | [ |
CuFeO2-24 | 3 | 300 | 1.0 | 1800 | 16.7 | 31.4 | 1.6 | 22.4 | 22.4 | 44.5 | 7.7 | [ |
ZnFe2O4 | 3 | 340 | 1.0 | 1800 | 34.0 | 11.7 | 8.6 | 28.1 | 28.1 | 51.6 | 11.3 | [ |
Fe-Cu-K-La | 3 | 300 | 1.1 | 3600 | 23.2 | 33 | 13 | 25 | 25 | 29 | 0.52 | [ |
Fe-Co-K(0.1)/P25 | 3 | 300 | 1.1 | 3600 | 23.9 | 31 | 23 | 11 | 11 | 35 | 0.20 | [ |
Fe-Cu-K(0.1)/P25 | 3 | 300 | 1.1 | 3600 | 19.9 | 49 | 12 | 8 | 8 | 31 | 0.38 | [ |
Table 2 Summary of catalytic performance over iron-based catalysts with various promoters and supports for CO2 hydrogenation.
Catalyst | H2/CO2 | T (°C) | P (MPa) | GHSV (mL h-1 g-1) | CO2 conv. (%) | Product sel. (%) | O/P | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CO | CH4 | C2‒C4= | C2‒C40 | C5+ | ||||||||
Fe/ZrO2 | 3 | 340 | 2.0 | 1200 | 32 | 25 | 52.5 | 0.1 | 21.8 | 0.7 | — | [ |
FeNa/ZrO2 | 3 | 340 | 2.0 | 1200 | 39 | 21 | 12.4 | 28.9 | 5.2 | 12.5 | — | [ |
FeCs/ZrO2 | 3 | 340 | 2.0 | 1200 | 39 | 16 | 17.4 | 28.8 | 6.4 | 14.3 | — | [ |
FeK/ZrO2 | 3 | 340 | 2.0 | 1200 | 42 | 15 | 11.9 | 29.0 | 6.1 | 19.0 | — | [ |
FeK/SiO2 | 3 | 340 | 2.0 | 1200 | 7.1 | 92 | 5.8 | 1.5 | 0.7 | 0.1 | — | [ |
FeK/Al2O3 | 3 | 340 | 2.0 | 1200 | 33 | 17 | 12.9 | 27.4 | 4.6 | 31.2 | — | [ |
FeK/TiO2 | 3 | 340 | 2.0 | 1200 | 21 | 55 | 8.4 | 16.3 | 2.7 | 10.6 | — | [ |
FeK/Meso-C | 3 | 340 | 2.0 | 1200 | 33 | 31 | 18.6 | 17.4 | 15.1 | 7.0 | — | [ |
FeK/CNT | 3 | 340 | 2.0 | 1200 | 35 | 12 | 19.2 | 27.4 | 4.6 | 31.2 | — | [ |
Fe3O4 | 3 | 320 | 3.0 | 2000 | 29.3 | 16.6 | 50.3 | 0.1 | 30.4 | 2.6 | 0.0 | [ |
FeNa(1.18) | 3 | 320 | 3.0 | 2000 | 40.5 | 13.5 | 13.7 | 40.3 | 6.5 | 26.0 | 6.2 | [ |
1Na/Fe | 3 | 320 | 3.0 | 2040 | 36.8 | 10.1 | 7.0 | 23.4 | 2.1 | 56.9 | 11.0 | [ |
5Mn-Na/Fe | 3 | 320 | 3.0 | 2040 | 38.6 | 11.7 | 11.8 | 30.2 | 4.0 | 42.1 | 7.5 | [ |
CuFeO2-24 | 3 | 300 | 1.0 | 1800 | 16.7 | 31.4 | 1.6 | 22.4 | 22.4 | 44.5 | 7.7 | [ |
ZnFe2O4 | 3 | 340 | 1.0 | 1800 | 34.0 | 11.7 | 8.6 | 28.1 | 28.1 | 51.6 | 11.3 | [ |
Fe-Cu-K-La | 3 | 300 | 1.1 | 3600 | 23.2 | 33 | 13 | 25 | 25 | 29 | 0.52 | [ |
Fe-Co-K(0.1)/P25 | 3 | 300 | 1.1 | 3600 | 23.9 | 31 | 23 | 11 | 11 | 35 | 0.20 | [ |
Fe-Cu-K(0.1)/P25 | 3 | 300 | 1.1 | 3600 | 19.9 | 49 | 12 | 8 | 8 | 31 | 0.38 | [ |
Fig. 8. In situ XRD patterns for the (a) Fe/ZrO2 catalyst, (b) K-Fe/ZrO2 catalyst under (H2 + CO2) (H2/CO2 = 3) gas flow at 345 °C for different times, and (c) Fe/ZrO2 catalysts with different alkali metals after reaction. Reproduced from Ref. [155] with permission from Elsevier.
Fig. 9. Effects of Na promoter on Fe-based catalyst for CO2 hydrogenation to alkenes. Reproduced from Ref. [166] with permission from the American Chemical Society.
Fig. 10. Catalytic performance of 10FexCu1K/Al2O3 at 400 °C (a), 10Fe3K/Al2O3 and 10Fe3Cu3K/Al2O3 at 400 °C (b), 10Fe1K/Al2O3 and 10Fe3Cu1K/ Al2O3 at 320 °C (c), and 10Fe3Cu1K/Al2O3 at different temperatures (d). Reproduced from Ref. [172] with permission from the American Chemical Society.
Fig. 11. N2 physisorption isotherms and pore-size distribution (a), SEM image (b), HAADF-STEM image (c), and TEM image and particle distribution histogram (d) of the as-prepared FeK1.5/HSG catalyst. Inset in (d) shows the lattice fringes of the nanoparticle on the catalyst. Reproduced from Ref. [252] with permission from the American Chemical Society.
Catalyst | H2/CO | T (°C) | P (MPa) | GHSV (mL h-1 g-1) | CO conv. (%) | CO2 sel. (%) | Product distribution (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2‒C4= | C2‒C40 | C5+ | |||||||||
FeZr(0.3) | 2 | 300 | 2.0 | 8000 | 82.1 | 41.2 | 4.6 | 5.3 | 4.5 | 85.6 | [ | |
Fe/PANI | 1 | 350 | 2.0 | 9000 | 79 | 44 | 24 | 47 | 14 | 15 | [ | |
IO-CAT | 1 | 275 | 1.5 | 2800 a | 75.4 | 42.6 | 9.05 | 20.0 | 20.0 | 71 | [ | |
Fe@C-400 | 1 | 340 | 2.0 | 30000 | 74 | 47 | 28.3 | 30.2 b | 26.4 b | — | [ | |
Fe@C-500 | 1 | 340 | 2.0 | 30000 | 76 | 46 | 27.8 | 25.9 b | 27.8 b | — | [ | |
Fe@C-600 | 1 | 340 | 2.0 | 30000 | 74 | 46 | 25.9 | 24.1 b | 31.5 b | — | [ | |
Fe@C-900 | 1 | 340 | 2.0 | 30000 | 53 | 45 | 23.6 | 30.9 b | 23.6 b | — | [ | |
38Fe@C | 1 | 340 | 1.5 | 3300 c | 70 | 43 | — | 24.6 | 22.8 | — | [ | |
33Fe@C/Al | 1 | 340 | 1.5 | 3300 c | 68 | 43 | — | 28.1 | 22.8 | — | [ | |
Fe-MIL-88B-NH2/C d | 1 | 300 | 2.0 | 36000 | 81.8 | 42.9 | 15.1 | 21.4 | 12.8 | 50.7 | [ | |
Fe-MIL-88B-NH2/C d | 1 | 300 | 2.0 | 180000 | 27.8 | 25.5 | 18.7 | 17.5 | 9.4 | 54.4 | [ | |
R-Fe@HZSM-5 | 2 | 270 | 2.0 | 2240 | 93 | 12 | 7.5 | 21.5 | 21.5 | 71 | [ | |
Fe3O4@H-ZSM-5 | 1 | 270 | 2.0 | 960 | 87 | — | 16 | 36.2 | 36.2 | 47.8 | [ | |
FeCuK/ZSM-5 | 2 | 300 | 1.0 | 2000 | 81.1 | 35.6 | 19.6 | 30.3 | 12.3 | 37.8 | [ | |
FeCuK/Mordenite | 2 | 300 | 1.0 | 2000 | 72.9 | 37.7 | 32.2 | 18.8 | 25.4 | 23.6 | [ | |
FeCuK/Beta-zeolite | 2 | 300 | 1.0 | 2000 | 63.9 | 25.2 | 31.5 | 29.2 | 21.6 | 17.7 | [ | |
FeZnNa | 8:3 | 340 | 2.0 | 10000 | 74.9 | 27.3 | 10.9 | 25.5 | 4.4 | 58.1(1.1) e | [ | |
FeZnNa@HZSM-5 | 8:3 | 340 | 2.0 | 10000 | 88.3 | 27.7 | 11.3 | 1.4 | 38.6 | 28.9(19.8) e | [ | |
FeZnNa@0.1-HZSM-5 | 8:3 | 340 | 2.0 | 10000 | 84.2 | 26.5 | 9.9 | 0.7 | 35.6 | 22.7(30.9) e | [ | |
FeZnNa@0.6-HZSM-5 | 8:3 | 340 | 2.0 | 10000 | 89.2 | 26.9 | 9.8 | 1.0 | 26.8 | 21.8(40.5) e | [ | |
FeZnNa@0.6-HZSM-5-a | 8:3 | 340 | 2.0 | 10000 | 88.8 | 27.5 | 9.6 | 1.0 | 25.6 | 13.2(50.6) e | [ | |
FeMn | 1 | 320 | 1.0 | 3600 | 58.7 | 42.4 | 19.6 | 26.9 | 11.1 | 42.4(0) e | [ | |
FeMn-HZSM-5 (particle mixing) | 1 | 320 | 1.0 | 3600 | 49.4 | 39.8 | 19.9 | 0.3 | 41.5 | 9.6(28.7) e | [ | |
FeMn&HZSM-5 (layered, h = 3 cm) | 1 | 320 | 1.0 | 3600 | 59.4 | 41.7 | 19.2 | 0.2 | 42.2 | 8.2(30.2) e | [ | |
FeMn-HZSM-5@Si-1 | 1 | 320 | 1.0 | 3600 | 60.0 | 42.7 | 22.5 | 1.0 | 31.5 | 11.4(33.6) e | [ | |
Fe/Ni-HZMS-5 | 2 | 330 | 4.0 | 1813 | 99.2 | 3.2 | 9.2 | 9.2 | 9.2 | 39.6(48.0) e | [ |
Table 3 Summary of catalytic performance over novel iron-based catalysts for FTS.
Catalyst | H2/CO | T (°C) | P (MPa) | GHSV (mL h-1 g-1) | CO conv. (%) | CO2 sel. (%) | Product distribution (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2‒C4= | C2‒C40 | C5+ | |||||||||
FeZr(0.3) | 2 | 300 | 2.0 | 8000 | 82.1 | 41.2 | 4.6 | 5.3 | 4.5 | 85.6 | [ | |
Fe/PANI | 1 | 350 | 2.0 | 9000 | 79 | 44 | 24 | 47 | 14 | 15 | [ | |
IO-CAT | 1 | 275 | 1.5 | 2800 a | 75.4 | 42.6 | 9.05 | 20.0 | 20.0 | 71 | [ | |
Fe@C-400 | 1 | 340 | 2.0 | 30000 | 74 | 47 | 28.3 | 30.2 b | 26.4 b | — | [ | |
Fe@C-500 | 1 | 340 | 2.0 | 30000 | 76 | 46 | 27.8 | 25.9 b | 27.8 b | — | [ | |
Fe@C-600 | 1 | 340 | 2.0 | 30000 | 74 | 46 | 25.9 | 24.1 b | 31.5 b | — | [ | |
Fe@C-900 | 1 | 340 | 2.0 | 30000 | 53 | 45 | 23.6 | 30.9 b | 23.6 b | — | [ | |
38Fe@C | 1 | 340 | 1.5 | 3300 c | 70 | 43 | — | 24.6 | 22.8 | — | [ | |
33Fe@C/Al | 1 | 340 | 1.5 | 3300 c | 68 | 43 | — | 28.1 | 22.8 | — | [ | |
Fe-MIL-88B-NH2/C d | 1 | 300 | 2.0 | 36000 | 81.8 | 42.9 | 15.1 | 21.4 | 12.8 | 50.7 | [ | |
Fe-MIL-88B-NH2/C d | 1 | 300 | 2.0 | 180000 | 27.8 | 25.5 | 18.7 | 17.5 | 9.4 | 54.4 | [ | |
R-Fe@HZSM-5 | 2 | 270 | 2.0 | 2240 | 93 | 12 | 7.5 | 21.5 | 21.5 | 71 | [ | |
Fe3O4@H-ZSM-5 | 1 | 270 | 2.0 | 960 | 87 | — | 16 | 36.2 | 36.2 | 47.8 | [ | |
FeCuK/ZSM-5 | 2 | 300 | 1.0 | 2000 | 81.1 | 35.6 | 19.6 | 30.3 | 12.3 | 37.8 | [ | |
FeCuK/Mordenite | 2 | 300 | 1.0 | 2000 | 72.9 | 37.7 | 32.2 | 18.8 | 25.4 | 23.6 | [ | |
FeCuK/Beta-zeolite | 2 | 300 | 1.0 | 2000 | 63.9 | 25.2 | 31.5 | 29.2 | 21.6 | 17.7 | [ | |
FeZnNa | 8:3 | 340 | 2.0 | 10000 | 74.9 | 27.3 | 10.9 | 25.5 | 4.4 | 58.1(1.1) e | [ | |
FeZnNa@HZSM-5 | 8:3 | 340 | 2.0 | 10000 | 88.3 | 27.7 | 11.3 | 1.4 | 38.6 | 28.9(19.8) e | [ | |
FeZnNa@0.1-HZSM-5 | 8:3 | 340 | 2.0 | 10000 | 84.2 | 26.5 | 9.9 | 0.7 | 35.6 | 22.7(30.9) e | [ | |
FeZnNa@0.6-HZSM-5 | 8:3 | 340 | 2.0 | 10000 | 89.2 | 26.9 | 9.8 | 1.0 | 26.8 | 21.8(40.5) e | [ | |
FeZnNa@0.6-HZSM-5-a | 8:3 | 340 | 2.0 | 10000 | 88.8 | 27.5 | 9.6 | 1.0 | 25.6 | 13.2(50.6) e | [ | |
FeMn | 1 | 320 | 1.0 | 3600 | 58.7 | 42.4 | 19.6 | 26.9 | 11.1 | 42.4(0) e | [ | |
FeMn-HZSM-5 (particle mixing) | 1 | 320 | 1.0 | 3600 | 49.4 | 39.8 | 19.9 | 0.3 | 41.5 | 9.6(28.7) e | [ | |
FeMn&HZSM-5 (layered, h = 3 cm) | 1 | 320 | 1.0 | 3600 | 59.4 | 41.7 | 19.2 | 0.2 | 42.2 | 8.2(30.2) e | [ | |
FeMn-HZSM-5@Si-1 | 1 | 320 | 1.0 | 3600 | 60.0 | 42.7 | 22.5 | 1.0 | 31.5 | 11.4(33.6) e | [ | |
Fe/Ni-HZMS-5 | 2 | 330 | 4.0 | 1813 | 99.2 | 3.2 | 9.2 | 9.2 | 9.2 | 39.6(48.0) e | [ |
Fig. 12. TEM images of fresh Fe2O3-ZrO2(0.3) (a) and used Fe2O3-ZrO2(0.3) (b); (c) XPS spectra of C 1s of the used FeZr catalysts; (d) 57Fe Mo?ssbauer spectra of Fe2O3-ZrO2(0.3). Reproduced from Ref. [268] with permission from the American Chemical Society.
Fig. 13. Schematic diagrams showing the preparation of Fe-MIL-88B-NH2/C nanocomposites from isostructural iron-MOF precursors (a) and the generation of the Fe3O4@χ-Fe5C2 core-shell catalysts and surface chemistry during FTS (b). Reproduced from Ref. [275] with permission from the American Chemical Society.
Fig. 14. Images of Fe3O4@ZSM-5 (Si/Fe = 11) microspheres. (a) SEM; (b) FESEM of a single microsphere; (c) SEM of a crushed microsphere; (d) TEM of a microsphere edge. Inset in (d) is an HRTEM image of the Fe3O4 nanoparticles around a ZSM-5 NR (scale bar = 5 nm); (e) The formation mechanism of functional Fe3O4@ZSM-5 microspheres through in situ crystallization from surface to core. Reproduced from Ref. [278] with permission from the American Chemical Society.
Catalyst | H2/CO2 | T (°C) | P (MPa) | GHSV (mL h-1 g-1) | CO2 conv. (%) | Product sel. (%) | O/P | Ref. | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CO | CH4 | C2‒C4= | C2‒C40 | C5+ | |||||||||||||||||
Fe2O3-CT600 | 3 | 350 | 1.5 | 1140 | 40 | 15 | 12 | 37 | 37 | 36 | 2.7 | [ | |||||||||
Fe/K(0.3) | 3 | 300 | 1.1 | 3600 | 27.0 | 21 | 15 | 64 | 64 | 64 | 1.1 | [ | |||||||||
Fe-Co(0.17)/K(0.3) | 3 | 300 | 1.1 | 3600 | 33.7 | 14 | 18 | 68 | 68 | 68 | 0.7 | [ | |||||||||
Fe-Co(0.17)/K(1.0) | 3 | 300 | 1.1 | 3600 | 31.0 | 18 | 13 | 69 | 69 | 69 | 5.2 | [ | |||||||||
10Fe0.8K a | 3 | 300 | 2.5 | 560 | 41.7 | 6.0 | 10.3 | 21.6 | 6.2 | 56.0 | 3.5 | [ | |||||||||
10Fe0.8K0.53Co a | 3 | 300 | 2.5 | 560 | 54.6 | 2.0 | 18.9 | 24.4 | 7.7 | 47.0 | 3.2 | [ | |||||||||
10Fe0.8K0.53Ru a | 3 | 300 | 2.5 | 560 | 47.1 | 3.1 | 16.4 | 19.7 | 7.4 | 53.4 | 2.8 | [ | |||||||||
N-600-0 | 3 | 400 | 3.0 | 3600 | 46.0 | 17.5 | 26.6 | 19.2 | 14.5 | 22.2 | 1.3 | [ | |||||||||
N-K-600-0 | 3 | 400 | 3.0 | 3600 | 43.1 | 26.1 | 26.2 | 27.3 | 5.0 | 15.4 | 5.5 | [ | |||||||||
FeZn-NC | 3 | 320 | 3.0 | 7200 | 29.3 | 19.9 | 16.6 | 30.0 | 6.1 | 27.4 | 4.92 | [ | |||||||||
FeZnK-NC | 3 | 320 | 3.0 | 7200 | 34.6 | 21.2 | 19.1 | 32.0 | 5.6 | 22.1 | 5.71 | [ |
Table 4 Summary of catalytic performance over novel iron-based catalysts for CO2 hydrogenation.
Catalyst | H2/CO2 | T (°C) | P (MPa) | GHSV (mL h-1 g-1) | CO2 conv. (%) | Product sel. (%) | O/P | Ref. | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CO | CH4 | C2‒C4= | C2‒C40 | C5+ | |||||||||||||||||
Fe2O3-CT600 | 3 | 350 | 1.5 | 1140 | 40 | 15 | 12 | 37 | 37 | 36 | 2.7 | [ | |||||||||
Fe/K(0.3) | 3 | 300 | 1.1 | 3600 | 27.0 | 21 | 15 | 64 | 64 | 64 | 1.1 | [ | |||||||||
Fe-Co(0.17)/K(0.3) | 3 | 300 | 1.1 | 3600 | 33.7 | 14 | 18 | 68 | 68 | 68 | 0.7 | [ | |||||||||
Fe-Co(0.17)/K(1.0) | 3 | 300 | 1.1 | 3600 | 31.0 | 18 | 13 | 69 | 69 | 69 | 5.2 | [ | |||||||||
10Fe0.8K a | 3 | 300 | 2.5 | 560 | 41.7 | 6.0 | 10.3 | 21.6 | 6.2 | 56.0 | 3.5 | [ | |||||||||
10Fe0.8K0.53Co a | 3 | 300 | 2.5 | 560 | 54.6 | 2.0 | 18.9 | 24.4 | 7.7 | 47.0 | 3.2 | [ | |||||||||
10Fe0.8K0.53Ru a | 3 | 300 | 2.5 | 560 | 47.1 | 3.1 | 16.4 | 19.7 | 7.4 | 53.4 | 2.8 | [ | |||||||||
N-600-0 | 3 | 400 | 3.0 | 3600 | 46.0 | 17.5 | 26.6 | 19.2 | 14.5 | 22.2 | 1.3 | [ | |||||||||
N-K-600-0 | 3 | 400 | 3.0 | 3600 | 43.1 | 26.1 | 26.2 | 27.3 | 5.0 | 15.4 | 5.5 | [ | |||||||||
FeZn-NC | 3 | 320 | 3.0 | 7200 | 29.3 | 19.9 | 16.6 | 30.0 | 6.1 | 27.4 | 4.92 | [ | |||||||||
FeZnK-NC | 3 | 320 | 3.0 | 7200 | 34.6 | 21.2 | 19.1 | 32.0 | 5.6 | 22.1 | 5.71 | [ |
Fig. 15. Proposed reaction mechanisms over FeAlOx-5 catalyst containing the three active phases of Fe3O4, Fe5C2, and AlOx. Reproduced from Ref. [284] with permission from the American Chemical Society.
|
[1] | 刘赵春, 宗雪, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. 金属掺杂SnO2电化学还原CO2制甲酸的计算研究[J]. 催化学报, 2023, 50(7): 249-259. |
[2] | 刘培功, 林铁军, 郭磊, 刘晓哲, 龚坤, 尧泰真, 安芸蕾, 钟良枢. 调控Co2C局域浸润环境实现高碳效合成气直接制烯烃[J]. 催化学报, 2023, 48(5): 150-163. |
[3] | 张锋伟, 郭河芳, 刘萌萌, 赵阳, 洪峰, 李静静, 董正平, 乔波涛. 表面应力介导的碳基Pt纳米催化剂用于硝基芳烃的高选择性加氢[J]. 催化学报, 2023, 48(5): 195-204. |
[4] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. 无碱CO2加氢高效制甲酸Pd/g-C3N4催化剂的单原子和纳米簇的协同作用[J]. 催化学报, 2023, 47(4): 214-221. |
[5] | 李航杰, 肖月华, 肖佳乐, 范凯, 李炳宽, 李晓龙, 王亮, 肖丰收. 镓改性的铜基疏水催化剂用于CO2选择性加氢制二甲醚的研究[J]. 催化学报, 2023, 54(11): 178-187. |
[6] | 张华阳, 田文婕, 段晓光, 孙红旗, 黄应平, 方艳芬, 王少彬. 金属基载体支撑的单原子催化剂用于光催化还原反应[J]. 催化学报, 2022, 43(9): 2301-2315. |
[7] | 高广, 赵泽伦, 王嘉, 席永杰, 孙鹏, 李福伟. PtReOx/TiO2金属-氧化物-载体相互作用增强手性羧酸选择性加氢[J]. 催化学报, 2022, 43(8): 2034-2044. |
[8] | 李鹏, 赵国强, 程宁燕, 夏力学, 李晓宁, 陈亚平, 劳梦梦, 程振祥, 赵焱, 徐迅, 姜银珠, 潘洪革, 窦士学, 孙文平. 过渡金属单原子功能化碳载体促进碱性氢电催化反应动力学[J]. 催化学报, 2022, 43(5): 1351-1359. |
[9] | 钟威, 许家超, 王苹, 朱必成, 范佳杰, 余火根. 新型核壳Ag@AgSex纳米粒子析氢助剂: 原位表面硒化以提升TiO2的光催化产氢活性[J]. 催化学报, 2022, 43(4): 1074-1083. |
[10] | 李龙泰, 杨彬, 高彪, 王逸夫, 张玲霞, 石原达已, 齐伟, 郭利民. In-Co二元金属氧化物上CO2催化加氢反应的选择性转变: 催化反应的机理和构效关系[J]. 催化学报, 2022, 43(3): 862-876. |
[11] | 王可, 何仕辉, 林云志, 陈旬, 戴文新, 付贤智. 氧空位修饰的暴露TiO2{001}的Ru/TiO2增强光热协同CO2甲烷化活性和稳定性[J]. 催化学报, 2022, 43(2): 391-402. |
[12] | 洪峰, 王升扬, 张军营, 付俊红, 蒋齐可, 孙科举, 黄家辉. 金属载体强相互作用增强Au/TiO2催化剂在3-硝基苯乙烯选择性加氢反应的活性[J]. 催化学报, 2021, 42(9): 1530-1537. |
[13] | 陈军伟, 欧祖翘, 陈海鑫, 宋树芹, 王昆, 王毅. 电催化剂纳米碳基载体的研究进展[J]. 催化学报, 2021, 42(8): 1297-1326. |
[14] | 罗靖洁, 董亚南, Corinne Petit, 梁长海. 不可还原材料负载的纳米金催化剂: 理性设计与优化[J]. 催化学报, 2021, 42(5): 670-693. |
[15] | 赵东越, 杨岳溪, 高中楠, 尹萌欣, 田野, 张静, 姜政, 于晓波, 李新刚. 贫燃/富燃循环气氛下原位活化Pd负载钙钛矿催化剂促进NOx还原消除[J]. 催化学报, 2021, 42(5): 795-807. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||