催化学报 ›› 2022, Vol. 43 ›› Issue (2): 178-214.DOI: 10.1016/S1872-2067(21)63910-4
王慧杰a, 李鑫a, 赵小雪a, 李春岩b, 宋相海a, 张鹏c, 霍鹏伟a(), 李鑫d(
)
收稿日期:
2021-04-30
接受日期:
2021-07-09
出版日期:
2022-02-18
发布日期:
2022-01-19
通讯作者:
霍鹏伟,李鑫
基金资助:
Huijie Wanga, Xin Lia, Xiaoxue Zhaoa, Chunyan Lib, Xianghai Songa, Peng Zhangc, Pengwei Huoa(), Xin Lid(
)
Received:
2021-04-30
Accepted:
2021-07-09
Online:
2022-02-18
Published:
2022-01-19
Contact:
Pengwei Huo, Xin Li
Supported by:
摘要:
多相光催化技术作为一种直接利用太阳光降解多种污染物的先进氧化工艺在环境修复领域的研究中引起了广泛关注. 在多相光催化过程中, 半导体材料在太阳光的激发下, 其强大的氧化/还原能力可快速高效降解各种污染物. 研究者通常根据环境中污染物的状态和种类选择合适的半导体材料及修饰策略, 构建高效多相光催化体系, 探究光催化材料在环境修复中的应用.
多相光催化技术在环境修复方面的应用已取得了较大进展, 但由于自然环境中污染物种类越来越多样和复杂, 多相光催化技术尚未实现大规模的应用. 此外, 光催化过程中光生电子空穴的分离和转移效率、半导体材料寿命和成本等因素也制约其实际应用. 因此, 仍需要通过合适的修饰策略制备高催化活性、高稳定性且价格低廉的光催化材料, 并借助DFT计算和原位表征等技术更深入地研究和理解多相光催化过程和机理, 从而实现环境目标污染物的快速降解.
本文首先介绍了环境修复中半导体多相光催化的基本原理, 光催化过程中活性氧物种(ROS)的种类及其作用机制, 以及潜在环境污染物和环境光催化面临的挑战. 其次, 系统地讨论了应用于环境修复中的多相光催化半导体材料(如: 金属氧化物、银基、铋系、无金属和有机聚合物、金属有机骨架、金属硫化物、Mxenes基和双金属氢氧化物基半导体等)以及半导体修饰策略(如: 异质结工程、缺陷工程、助催化剂体系、元素掺杂工程、金属磷化等). 最后, 总结了多相光催化技术在环境修复中的应用进展, 并对多相光催化在环境修复领域的未来发展方向进行了展望.
王慧杰, 李鑫, 赵小雪, 李春岩, 宋相海, 张鹏, 霍鹏伟, 李鑫. 可用于环境修复的半导体光催化剂及其改性策略研究进展[J]. 催化学报, 2022, 43(2): 178-214.
Huijie Wang, Xin Li, Xiaoxue Zhao, Chunyan Li, Xianghai Song, Peng Zhang, Pengwei Huo, Xin Li. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies[J]. Chinese Journal of Catalysis, 2022, 43(2): 178-214.
Fig. 1. Number of journal papers on the photocatalytic degradation of various pollutants, retrieved using “photocatalytic” and “degradation” as two topic keywords, since 2001 (a) and retrieved using “photocatalytic” and “different potential pollutants” as topic keywords, since 2001 (b). Adapted from ISI Web of Science Core Collection, date of search: May 2021.
Fig. 2. (a) Some typical environmental pollutants; (b) Schematic of the characteristic photocatalytic processes of environmental pollutants on a single semiconductor photocatalyst. (b) Reprinted with permission from Ref. [114]. Copyright 2017, John Wiley and Sons.
Semiconductor | *ECB | *ECB | Light | Morphology | Modification strategy | Potential applications | Ref. |
---|---|---|---|---|---|---|---|
TiO2 | ‒0.29 | 2.91 | visible/UV | nanosheets/nanorods/ QDs/nanoparticles/ polycrystals | heterojunction construction/ doping/defect engineering/ cocatalyst loading | degradation/CO2 reduction/ H2 evolution/Photocatalytic conversion/antimicrobial agents | [ |
ZnO | -0.31 | 2.89 | visible | nanosheets/nanorods/ nanowires/nanoparticles | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/H2 evolution/antimicrobial agents | [ |
BiVO4 | 0.33 | 3.13 | visible | nanosheets/nanoparticles | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution | [ |
BiOCl | 0.18 | 3.23 | visible | nanosheets/nanospheres | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution | [ |
Ag2O | 0.19 | 1.39 | visible/UV | nanospheres/nanospheres | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution/supercapacitors | [ |
AgVO3 | -0.3 | 2.1 | visible | nanosheets/nanorods | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution/antimicrobial agents | [ |
Cu2S | -0.06 | 1.04 | visible | nanosheets/nanorods/ atomic layers | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution | [ |
ZnIn2S4 | -0.84 | 1.56 | visible | nanosheets/nanospheres | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution | [ |
CoAl-LDH | -0.87 | 1.23 | visible | nanosheets/nanospheres | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution/supercapacitors | [ |
MIL-125-NH2 | 0.72 | 2.02 | visible | nanospheres | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution/adsorbents | [ |
UIO-66-NH2 | -0.67 | 2.03 | visible | octahedra | heterojunction construction/ doping/defect engineering/ cocatalyst loading/phosphating | degradation/CO2 reduction/ H2 evolution | [ |
g-C3N4 | -1.3 | 1.4 | visible/UV | nanosheets/QDs | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution | [ |
Table 1 Important parameters of typical semiconductors.
Semiconductor | *ECB | *ECB | Light | Morphology | Modification strategy | Potential applications | Ref. |
---|---|---|---|---|---|---|---|
TiO2 | ‒0.29 | 2.91 | visible/UV | nanosheets/nanorods/ QDs/nanoparticles/ polycrystals | heterojunction construction/ doping/defect engineering/ cocatalyst loading | degradation/CO2 reduction/ H2 evolution/Photocatalytic conversion/antimicrobial agents | [ |
ZnO | -0.31 | 2.89 | visible | nanosheets/nanorods/ nanowires/nanoparticles | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/H2 evolution/antimicrobial agents | [ |
BiVO4 | 0.33 | 3.13 | visible | nanosheets/nanoparticles | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution | [ |
BiOCl | 0.18 | 3.23 | visible | nanosheets/nanospheres | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution | [ |
Ag2O | 0.19 | 1.39 | visible/UV | nanospheres/nanospheres | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution/supercapacitors | [ |
AgVO3 | -0.3 | 2.1 | visible | nanosheets/nanorods | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution/antimicrobial agents | [ |
Cu2S | -0.06 | 1.04 | visible | nanosheets/nanorods/ atomic layers | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution | [ |
ZnIn2S4 | -0.84 | 1.56 | visible | nanosheets/nanospheres | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution | [ |
CoAl-LDH | -0.87 | 1.23 | visible | nanosheets/nanospheres | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution/supercapacitors | [ |
MIL-125-NH2 | 0.72 | 2.02 | visible | nanospheres | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution/adsorbents | [ |
UIO-66-NH2 | -0.67 | 2.03 | visible | octahedra | heterojunction construction/ doping/defect engineering/ cocatalyst loading/phosphating | degradation/CO2 reduction/ H2 evolution | [ |
g-C3N4 | -1.3 | 1.4 | visible/UV | nanosheets/QDs | heterojunction construction/ doping/cocatalyst loading | degradation/CO2 reduction/ H2 evolution | [ |
Fig. 4. Possible degradation mechanism of sulfamethazine over the C3N4 nanobelt/peroxydisulfate system. Reprinted with permission from Ref. [63]. Copyright 2021, the Royal Society of Chemistry.
ROS | Chemical formula | Redox potential (vs. NHE (V)) |
---|---|---|
Hydroxyl radical | •OH | 1.8-2.7 |
Superoxide radical | •O2- | -0.33 |
Singlet oxygen | 1O2 | 0.81 |
Sulfate radical | •SO4- | 2.5-3.1 |
Peroxymonosulfate radical | •SO5- | 1.1 |
Hydrogen radical | H• | -2.3 |
Hydroperoxyl radical | HO2• | 1.7 |
Peroxydisulfate radical | •S2O8- | 2.01 |
Table 2 Redox potentials of various reactive oxidation species (ROS) [67].
ROS | Chemical formula | Redox potential (vs. NHE (V)) |
---|---|---|
Hydroxyl radical | •OH | 1.8-2.7 |
Superoxide radical | •O2- | -0.33 |
Singlet oxygen | 1O2 | 0.81 |
Sulfate radical | •SO4- | 2.5-3.1 |
Peroxymonosulfate radical | •SO5- | 1.1 |
Hydrogen radical | H• | -2.3 |
Hydroperoxyl radical | HO2• | 1.7 |
Peroxydisulfate radical | •S2O8- | 2.01 |
Fig. 5. (a) Scanning electron microscopy (SEM) image of TiO2(B) microspheres; (b) N2 adsorption-desorption isotherms of TiO2(B) microspheres and P25-TiO2 materials; (c) Photothermal catalytic experiments (60 °C) of NO conversion, non-NO2 selectivity, and NO2 release ratio over TiO2(B) microspheres; Electron spin resonance (ESR) signals of •OH (d) and •O2- (e) for TiO2(B) microsphere and P25 samples under dark and UV-light conditions in 25 mM DMPO aqueous or methanol solutions; (f) Mechanism of NO removal by porous TiO2(B) microspheres via photocatalysis and photothermal catalysis. Reprinted with permission from Ref. [73]. Copyright 2020, Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
Fig. 6. ESR spin-trapping tests (a,b) and Transient photocurrent response (TPR) spectra (c) of mesoporous Bi@Bi2O3 nanospheres and pure-Bi@Bi2O3; (d) Work function mappings of mesoporous Bi@Bi2O3 nanospheres, pure-Bi@Bi2O3, and P123-Bi@Bi2O3; (e) Pathways of adsorption and photocatalytic removal of NOx on the surface of the mesoporous Bi@Bi2O3 nanospheres. Reprinted with permission from Ref. [74]. Copyright 2021, Elsevier.
Fig. 7. Number of journal papers on antibacterial photocatalysis, retrieved using “photocatalytic” and “antibacterial” as two topic keywords since 2001, and the inset pie chart represents the proportion of journal papers on different microorganisms since 2001 (Adapted from ISI Web of Science Core Collection, date of search: May 2021).
Fig. 8. N2 adsorption-desorption isotherms (a), UV-vis spectra (b), EPR spectra (c), and PL spectra (d) of CST and GST; (e) Schematic of the photocatalytic antibacterial mechanism over GST. Reprinted with permission from Ref. [78]. Copyright 2021, Elsevier.
Fig. 9. SEM images of US-MoS2 (a), HY-MoS2 (b), and IN-MoS2 (c); ESR spectra of e- (d) and 1O2 (e) for the different MoS2 samples; (f) Photobacterial efficiency of MoS2 in the presence of different capture agents; and (g) schematic of the photoinduced sterilization mechanism over the MoS2 photocatalyst. Reprinted with permission from Ref. [87]. Copyright 2021, Elsevier.
Fig. 10. (a) Schematic of the conversion of various plastic wastes into C2 fuels via a designed two-step pathway under simulated natural conditions. Reprinted with permission from Ref. [97]. Copyright (2020) John Wiley and Sons. (b) Schematic of polymer photoreforming using a CNx/Ni2P photocatalyst. Reprinted with permission from Ref. [98]. Copyright 2019, American Chemical Society.
Fig. 11. (a) Photocatalytic activity of RGO/TiO2 for the photocatalytic desulfurization of thiophene and (b) schematic of the possible photocatalytic desulfurization mechanism of RGO/TiO2 nanocomposites. Reprinted with permission from Ref. [107]. Copyright 2019, Elsevier.
Fig. 12. (a) O 1s XPS spectra of N-TiO2 and Si/N-TiO2; (b) PL spectra of different materials; (c) Adsorption ability and photocatalytic reduction efficiency of Cr(VI) over different materials under visible-light irradiation; (d) Schematic of the possible photocatalytic reduction mechanism of Cr(VI) over Si/N-TiO2 nanocrystals. Reprinted with permission from Ref. [113]. Copyright 2020, Elsevier.
Fig. 13. Schematic of the preparation of the Cd0.5Zn0.5S@ZIF-8 photocatalyst and charge transfer in the Cd0.5Zn0.5S@ZIF-8 photocatalyst under visible-light irradiation for the photocatalytic reduction of Cr(VI). Reprinted with permission from Ref. [124]. Copyright 2018, Elsevier.
Fig. 14. (a) TEM image of ZIF67-C3N4 (0.3); N2 adsorption and desorption isotherms (b) and photodegradation (c) of methylene blue (MB) in the presence of C3N4, ZIF67, and ZIF67-C3N4 (0.3); (d) Effect of initial pH of the MB solution on the photocatalytic degradation rate of MB; (e) Schematic of the possible photocatalytic degradation mechanism of MB over ZIF67-C3N4 (0.3). Reprinted with permission from Ref. [119]. Copyright 2020, Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
Fig. 15. (a) SEM and (b) TEM images of the ZnIn2S4/SO-GCN heterojunction composite; (c) UV-vis absorption spectra of bulk ZnIn2S4 and SO-GCN and ZnIn2S4/SO-GCN heterojunction composite; (d) Photocatalytic degradation of 2,4-D by different photocatalysts under visible-light irradiation; and (e) schematic of the possible photocatalytic degradation mechanism of 2,4-D over the ZnIn2S4/SO-GCN heterojunction nanocomposite. Reprinted with permission from Ref. [28]. Copyright 2020, Elsevier.
Fig. 16. (a) O 1s XPS spectra of SnO2 and 2‐Zn‐SnO2; (b) EPR spectra of SnO2 and 2‐Zn‐SnO2; (c-f) Optimized adsorption of O2 and H2O on SnO2 and X‐Zn‐SnO2 calculated via DFT; (g-l) Adsorption of reactants and intermediates on the surfaces of SnO2 and Zn‐SnO2 calculated via DFT calculations; (m) Schematic of the photocatalytic degradation mechanism of toluene over the Zn‐SnO2 surface. Reprinted with permission from Ref. [140]. Copyright 2021, Elsevier.
Fig. 17. (a) Schematic of the fabrication of Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunctions and (b) schematic of the photocatalytic improvement mechanism of Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunctions for tetracycline degradation. Reprinted with permission from Ref. [148]. Copyright 2021, Elsevier.
Fig. 19. Mechanism of the photocatalytic reduction of Cr(VI) by SnS2 and PANI/SnS2/NRG composites. Reprinted with permission from Ref. [154]. Copyright 2018, Elsevier.
Fig. 20. (a) Schematic of the photocatalytic degradation of methyl orange by plasmonic hot carriers in WO3-x nanosheets. Reprinted with permission from Ref. [165]. Copyright (2021) American Chemical Society. (b) Schematic of the photocatalytic reduction of Cr(VI) by W18O49. Reprinted with permission from Ref. [166]. Copyright 2021, the Royal Society of Chemistry.
Fig. 23. (a) UV-vis spectra of h-BN and S-BN samples; (b) Photocatalytic degradation rates of 2,4-D over h-BN and S-BN under different light conditions; (c) Schematic of interlayer charge transfer, band structure change, and 2,4-D degradation by S-BN photocatalysts. Reprinted with permission from Ref. [182]. Copyright 2019, Elsevier.
Photocatalyst | Pollutant | Concentration (mg·mL‒1) | Reactive species | Activity (%) | Time (min) | Ref. |
---|---|---|---|---|---|---|
NH2-UiO-66/ZnIn2S4 | MG | 100 | •OH | 98.0 | 200 | [ |
CoTiO3/UiO-66-NH2 | NFX | 20 | h+, •OH, •O2- | 90.1 | 60 | [ |
In2S3/UiO-66 | MO/TCH | 15/30 | •O2- | 96.2/84.8 | 60 | [ |
S-TiO2/UiO-66-NH2 | BPA/Cr(VI) | 5 | •O2- | 81.0/89.1 | 90 | [ |
NH2-MIL-101(Fe) | Bisphenol F | 10 | •OH, •O2-, 1O2, •SO4- | 91.0 | 40 | [ |
Ce/ZnGa2O4/NH2-UIO-66 | NO/EA | 200/50 | •O2- | 100/96.2 | 90 | [ |
M-Co1+xFe2-xO4/PMS | RhB | 40 | •SO4- | 97.9 | 60 | [ |
GC-N-TiO2 | TO | unknown | •OH, •O2- | 76.0 | 60 | [ |
Co-MOF-74 | Toluene | 1000 | unknown | 95.0 | 30 | [ |
CoFe2O4/NMT (CFNMT) | RhB | 35 | h+ | 89.0 | 10 | [ |
Al-PMOF(M) | NO2 | 1000 | unknown | 23.5 | 360 | [ |
Ag/AgCl@ZIF-8 | LVFX | 10 | •OH, h+, •SO4-, •O2- | 87.3 | 60 | [ |
TiO2-MIL-101(Cr) | TC | 10 | h+, •O2- | 99.7 | 90 | [ |
In2S3/MIL-100(Fe) | TC | 10 | h+, •OH, •O2- | 70.0 | 90 | [ |
Zn/Ti-MOF | RhB | 10 | •O2- | 94.0 | 50 | [ |
ZIF-8 | E. coli | unknown | H2O2, •O2- | 99.9 | 120 | [ |
NH2-MIL-125/Co(dmgH)2 | NO | unknown | •OH, •O2- | 22.7 | 30 | [ |
Ag NPs@MIL-100(Fe)/GG | MB | 40 | •OH, •O2- | 100 | 100 | [ |
MIL-53(Al)/ZnO | TRI | 10 | •OH, •O2- | 93.5 | 240 | [ |
BeTiO2‒x@ZIF-67 | BHA | 10 | h+, •OH, •O2- | 95.3 | 60 | [ |
MOF-5/LTH | MB | 30 | •OH | 98.1 | 125 | [ |
Cu2+-MOFs | MB | unknown | 1O2 | 99.7 | 1 | [ |
MIL-167/MIL-125-NH2 | NFX | 20 | h+, •O2- | 75.0 | 60 | [ |
MIL-101(Fe)/PMS | MB | 10 | •OH, •SO4- | 90.0 | 25 | [ |
MIL-53(Fe)/SnS | Cr(VI) | 20 | h+, •OH, •O2- | 71.7 | 60 | [ |
P-doped carbon/Cu2O | Phenol | 40 | h+, •OH, •O2- | 99.8 | 90 | [ |
Table 3 Photocatalytic removal of environmental pollutants over metal-organic framework‐based photocatalysts.
Photocatalyst | Pollutant | Concentration (mg·mL‒1) | Reactive species | Activity (%) | Time (min) | Ref. |
---|---|---|---|---|---|---|
NH2-UiO-66/ZnIn2S4 | MG | 100 | •OH | 98.0 | 200 | [ |
CoTiO3/UiO-66-NH2 | NFX | 20 | h+, •OH, •O2- | 90.1 | 60 | [ |
In2S3/UiO-66 | MO/TCH | 15/30 | •O2- | 96.2/84.8 | 60 | [ |
S-TiO2/UiO-66-NH2 | BPA/Cr(VI) | 5 | •O2- | 81.0/89.1 | 90 | [ |
NH2-MIL-101(Fe) | Bisphenol F | 10 | •OH, •O2-, 1O2, •SO4- | 91.0 | 40 | [ |
Ce/ZnGa2O4/NH2-UIO-66 | NO/EA | 200/50 | •O2- | 100/96.2 | 90 | [ |
M-Co1+xFe2-xO4/PMS | RhB | 40 | •SO4- | 97.9 | 60 | [ |
GC-N-TiO2 | TO | unknown | •OH, •O2- | 76.0 | 60 | [ |
Co-MOF-74 | Toluene | 1000 | unknown | 95.0 | 30 | [ |
CoFe2O4/NMT (CFNMT) | RhB | 35 | h+ | 89.0 | 10 | [ |
Al-PMOF(M) | NO2 | 1000 | unknown | 23.5 | 360 | [ |
Ag/AgCl@ZIF-8 | LVFX | 10 | •OH, h+, •SO4-, •O2- | 87.3 | 60 | [ |
TiO2-MIL-101(Cr) | TC | 10 | h+, •O2- | 99.7 | 90 | [ |
In2S3/MIL-100(Fe) | TC | 10 | h+, •OH, •O2- | 70.0 | 90 | [ |
Zn/Ti-MOF | RhB | 10 | •O2- | 94.0 | 50 | [ |
ZIF-8 | E. coli | unknown | H2O2, •O2- | 99.9 | 120 | [ |
NH2-MIL-125/Co(dmgH)2 | NO | unknown | •OH, •O2- | 22.7 | 30 | [ |
Ag NPs@MIL-100(Fe)/GG | MB | 40 | •OH, •O2- | 100 | 100 | [ |
MIL-53(Al)/ZnO | TRI | 10 | •OH, •O2- | 93.5 | 240 | [ |
BeTiO2‒x@ZIF-67 | BHA | 10 | h+, •OH, •O2- | 95.3 | 60 | [ |
MOF-5/LTH | MB | 30 | •OH | 98.1 | 125 | [ |
Cu2+-MOFs | MB | unknown | 1O2 | 99.7 | 1 | [ |
MIL-167/MIL-125-NH2 | NFX | 20 | h+, •O2- | 75.0 | 60 | [ |
MIL-101(Fe)/PMS | MB | 10 | •OH, •SO4- | 90.0 | 25 | [ |
MIL-53(Fe)/SnS | Cr(VI) | 20 | h+, •OH, •O2- | 71.7 | 60 | [ |
P-doped carbon/Cu2O | Phenol | 40 | h+, •OH, •O2- | 99.8 | 90 | [ |
Fig. 24. TPR (a) and EIS (b) of WO3, In2S3, WO3/In2S3 and WO3/TQDs/In2S3 with different TQD loadings. Schematics of the photocatalytic removals of Cr(VI) (c) and bisphenol A (d) by WO3/TQDs/In2S3 under visible-light irradiation. Reprinted with permission from Ref. [223]. Copyright 2021, Elsevier.
Fig. 25. 2D (a) and 3D (b) crystal structures of LDHs; (c) Schematic of the photocatalytic degradation of pollutants over LDH-based photocatalysts. Reprinted with permission from Ref. [225]. Copyright 2020, Elsevier.
Fig. 26. (a) Effect of gravitational force on a frog that jumps from the pond; (b) Electron-hole excitation and recombination on a single-phase photocatalyst. (b) Reprinted with permission from Ref. [114]. Copyright 2017, John Wiley and Sons.
Fig. 27. Schematics of the three types of separation mechanisms of electron-hole pairs in the case of conventional light-responsive heterojunction photocatalysts. (a) p-n; (b) surface; (c) S-scheme heterojunctions. (a) Reprinted with permission from Ref. [114]. Copyright 2017, John Wiley and Sons. (b) Reprinted with permission from Ref. [233]. Copyright 2014, American Chemical Society. (c) Reprinted with permission from Ref. [244]. Copyright 2019, Elsevier.
Fig. 28. Photoluminescence spectra (a) and photocurrent responses (b) of Bi2O3/Ti3+-TiO2; (c) Photocatalytic degradation mechanism of tetracycline over Bi2O3/Ti3+-TiO2 under visible-light irradiation. Reprinted with permission from Ref. [230]. Copyright 2021, Elsevier.
Fig. 29. (a) TEM image of HF0; (b,c) Field-emission scanning electron microscopy images of HF4.5 and HF9; (d) Comparison between the photocatalytic performances of P25-TiO2 and TiO2 samples with different amounts of HF for the reduction of CO2 to CH4; (e-g) Schematic of the spatial separation of redox sites on the {101} and {001} facets at different ratios. Reprinted with permission from Ref. [233]. Copyright 2014, American Chemical Society.
Fig. 30. (a) SEM and TEM images of spherical (Ts) and polyhedral (T1, T2, T3, and T4) TiO2 nanocrystals; (b) schematic of antibacterial photocatalysis over the TiO2 surface heterojunction. Reprinted with permission from Ref. [234]. Copyright 2017, American Chemical Society.
Fig. 31. (a) Efficiency of the oxidation of Hg0 to HgO over the anatase TiO2 photocatalysts with different ratios of {101} and {001} facets; (b) Schematic of the possible mechanism of photoinduced electron and hole transport and reaction mechanism over different facets. Reprinted with permission from Ref. [235]. Copyright 2017, Elsevier.
Fig. 32. Band structures of some representative oxidation/reduction photocatalysts. Reprinted with permission from Ref. [229]. Copyright 2021, Elsevier.
Fig. 33. (a) Photocatalytic activity curves of different composites for the degradation of CR; (b) Radical trapping tests of the SCNT6 sample for the degradation of CR using disparate scavengers; Calculated electrostatic potentials for the (101) facets of TiO2 (c) and SCN (d); (e) schematic of the proposed mechanism for the photodegradation of CR over SCN/TiO2 S-scheme heterojunction composites. Reprinted with permission from Ref. [245]. Copyright 2021, Elsevier.
Photocatalyst | Pollutant | Concentration (mg·mL‒1) or (mL·mL‒1) | Activity (%) | Time (min) | Year | Ref. |
---|---|---|---|---|---|---|
ZnO/biochar | MB | 160 | 95.2 | 220 | 2021 | [ |
Bi2O3-ZnO | CR | 200 | 99.0 | 60 | 2021 | [ |
Bi2MoO6/g-C3N4 | RhB | 5 | 97.6 | 40 | 2020 | [ |
BP/BiOBr | TC | 10 | 85.0 | 90 | 2020 | [ |
In2O3‒x(OH)y/Bi2MoO6 | RhB/Cr(VI) | 20/40 | 97.5/96.0 | 50/70 | 2020 | [ |
WO3/g-C3N4 | TC | 20 | 50.9 | 120 | 2020 | [ |
CdS/ReS2 | Cr(VI) | 50 | unknown | 30 | 2020 | [ |
S-pCN/WO2.72 | TC/RhB | 50/10 | unknown | 120 | 2020 | [ |
Bi12O17Cl2/α-Bi2O3 | TC | 20 | 77.0 | 100 | 2021 | [ |
OV-Bi2O3/Bi2SiO5 | MO/Phenol | 10/10 | 67.0/30.0 | 420/360 | 2020 | [ |
Bi2WO6/g-C3N4 | ADN | 200 | 98.9 | 80 | 2021 | [ |
BiOBr/BiO(HCOO)Brx | MG/RhB/TC | 20/20/20 | 60.0/98.0/80.0 | 120 | 2020 | [ |
Sb2WO6/BiOBr | NO | unknown | 52.9 | 30 | 2020 | [ |
CeO2/PCN | Bacterial | unknown | 88.1 | 15 | 2020 | [ |
Bi2O3/TiO2 | Phenol | 100 | unknown | 20 | 2021 | [ |
g-C3N4-nanosheet/ZnCr2O4 | TC/Phenol | 20/5 | 89.7/88.2 | 60 | 2021 | [ |
Sb2WO6/g-C3N4 | NO | unknown | 68.0 | 30 | 2021 | [ |
CN/AgBr/BPNs | MO | 10 | 98.0 | 30 | 2021 | [ |
Ag/γ-AgI/Bi2O2CO3/Bi | TC | 10 | 84.0 | 100 | 2021 | [ |
g-C3N4/SnO2 | NO | 500 | 40.0 | 30 | 2021 | [ |
Bi2O3/P-C3N4 | LVFX | 10 | 89.2 | 75 | 2021 | [ |
BiVO4/g-C3N4 | HCHO | 800 | 49.4 | 360 | 2021 | [ |
BiOBr/g-C3N4 | RhB | 10 | 99.0 | 30 | 2021 | [ |
Table 4 Photocatalytic removal of environmental pollutants over S-scheme heterojunction photocatalysts.
Photocatalyst | Pollutant | Concentration (mg·mL‒1) or (mL·mL‒1) | Activity (%) | Time (min) | Year | Ref. |
---|---|---|---|---|---|---|
ZnO/biochar | MB | 160 | 95.2 | 220 | 2021 | [ |
Bi2O3-ZnO | CR | 200 | 99.0 | 60 | 2021 | [ |
Bi2MoO6/g-C3N4 | RhB | 5 | 97.6 | 40 | 2020 | [ |
BP/BiOBr | TC | 10 | 85.0 | 90 | 2020 | [ |
In2O3‒x(OH)y/Bi2MoO6 | RhB/Cr(VI) | 20/40 | 97.5/96.0 | 50/70 | 2020 | [ |
WO3/g-C3N4 | TC | 20 | 50.9 | 120 | 2020 | [ |
CdS/ReS2 | Cr(VI) | 50 | unknown | 30 | 2020 | [ |
S-pCN/WO2.72 | TC/RhB | 50/10 | unknown | 120 | 2020 | [ |
Bi12O17Cl2/α-Bi2O3 | TC | 20 | 77.0 | 100 | 2021 | [ |
OV-Bi2O3/Bi2SiO5 | MO/Phenol | 10/10 | 67.0/30.0 | 420/360 | 2020 | [ |
Bi2WO6/g-C3N4 | ADN | 200 | 98.9 | 80 | 2021 | [ |
BiOBr/BiO(HCOO)Brx | MG/RhB/TC | 20/20/20 | 60.0/98.0/80.0 | 120 | 2020 | [ |
Sb2WO6/BiOBr | NO | unknown | 52.9 | 30 | 2020 | [ |
CeO2/PCN | Bacterial | unknown | 88.1 | 15 | 2020 | [ |
Bi2O3/TiO2 | Phenol | 100 | unknown | 20 | 2021 | [ |
g-C3N4-nanosheet/ZnCr2O4 | TC/Phenol | 20/5 | 89.7/88.2 | 60 | 2021 | [ |
Sb2WO6/g-C3N4 | NO | unknown | 68.0 | 30 | 2021 | [ |
CN/AgBr/BPNs | MO | 10 | 98.0 | 30 | 2021 | [ |
Ag/γ-AgI/Bi2O2CO3/Bi | TC | 10 | 84.0 | 100 | 2021 | [ |
g-C3N4/SnO2 | NO | 500 | 40.0 | 30 | 2021 | [ |
Bi2O3/P-C3N4 | LVFX | 10 | 89.2 | 75 | 2021 | [ |
BiVO4/g-C3N4 | HCHO | 800 | 49.4 | 360 | 2021 | [ |
BiOBr/g-C3N4 | RhB | 10 | 99.0 | 30 | 2021 | [ |
Fig. 34. (a) Radical trapping experiments of CdS-g-C3N4-GA for the degradation of rhodamine B (RhB); ESR spectra of DMPO-•O2- (b) and DMPO-•OH (c); (d-f) Calculated electrostatic potentials based on DFT calculations; (g) Photocatalytic performances of different materials for the degradation of RhB; (h) Schematic of the proposed photocatalytic reaction mechanism of the CdS-g-C3N4-GA S-scheme heterojunction photocatalyst. Reprinted with permission from Ref. [246]. Copyright 2021, Elsevier.
Fig. 35. (a) Schematic of the preparation of OV-modified TiO2/Ti3C2 Schottky-junction photocatalysts; XPS spectra of A-TOTC-0.5 (b) and A-TOTC-4 (c); (d) BPA degradation performance of photocatalysts; (e) schematic of the proposed mechanism for the enhanced photocatalytic activity of A-TOTC-2 for the degradation of BPA. Reprinted with permission from Ref. [272]. Copyright 2020, Elsevier.
Fig. 36. (a) XPS spectrum of the PCNNi photocatalyst; Fourier transform infrared spectra (b), PL spectra (c), TPR spectra (d), band structures (e), and photocatalytic TC degradation activities (f) of CNB, PCN, and PCNNi materials. Reprinted with permission from Ref. [289]. Copyright 2021, Elsevier.
Fig. 37. (a) TEM image of the S/Ti = 0.25 ST photocatalyst; (b) UV-Vis spectra and (c) photocatalytic activities of various ST photocatalysts with different S/Ti molar ratios for the degradation of PYR by ST/Sulfite/Vis LED; (d) Photocatalytic activities of various ST photocatalysts with different S/Ti molar ratios for the degradation of PYR by ST/Oxone (HSO5-)/Vis LED; (e) Schematic of the possible activation mechanism of HSO5- over the S-TiO2 surface. Reprinted with permission from Ref. [290]. Copyright 2021, Elsevier.
Fig. 38. (a) Metals and non-metals in the periodic table used for the synthesis of metal phosphides for catalytic applications. Reprinted with permission from Ref. [293]. Copyright (2021), the Royal Society of Chemistry. UV-Vis spectra (b), TPR (c), and photocatalytic TC degradation activities (d) of NP, NCL, and NPLDH; (e) Photocatalytic degradation mechanism of TC on NPLDH under visible-light illumination. Reprinted with permission from Ref. [294]. Copyright 2021, Elsevier.
|
[1] | 刘成, 陈梦宁, 时应章, 王志文, 郭韦, 林森, 毕进红, 吴棱. 超薄ZnTi-LDH纳米片作为一种具有路易斯酸和布朗斯特酸的双功能光催化剂用于串联反应合成N-亚苄基苯胺[J]. 催化学报, 2023, 49(6): 102-112. |
[2] | 李卓根, 张伟斌, 朱陆军, 高健智, 石先进, 黄宇, 刘鹏, 朱刚强. 通过实验和理论验证Pt0/SrTiO3‒δ复合催化剂双反应路径促进CO2还原[J]. 催化学报, 2023, 46(3): 113-124. |
[3] | 孙阳, Jan E. Szulejko, Ki-Hyun Kim, Vanish Kumar, 李小伟. 铋基材料光催化还原水中六价铬的研究进展[J]. 催化学报, 2023, 55(12): 20-43. |
[4] | 郑子叶, 田爽, 冯玉晓, 赵珊, 李鑫, 王曙光, 何作利. 光催化耦合技术在废水处理中的最新进展[J]. 催化学报, 2023, 54(11): 88-136. |
[5] | 刘伟旭, 贺唱, 朱博文, 朱恩伟, 张亚宁, 陈云宁, 李军山, 朱永法. 利用有机超分子光催化剂在太阳光下处理污水的研究进展[J]. 催化学报, 2023, 53(10): 13-30. |
[6] | 李楠, 王传义, 章柯, 吕海钦, 苑明哲, Detlef W. Bahnemann. 光催化转化低浓度NO的进展与展望[J]. 催化学报, 2022, 43(9): 2363-2387. |
[7] | 卢海娇, 李显龙, Sabiha Akter Monny, 王志亮, 王连洲. 基于过渡金属氧化物半导体上光电催化生产过氧化氢[J]. 催化学报, 2022, 43(5): 1204-1215. |
[8] | 张亚萍, 徐继香, 周洁, 王磊. 金属-有机框架衍生的多功能光催化剂[J]. 催化学报, 2022, 43(4): 971-1000. |
[9] | 张龙, 杨懿, 李远志, 武继春, 吴绍文, 谭鑫, 胡倩倩. 二氧化铈-铈掺杂锰氧化物纳米复合物高效紫外-可见-红外光热催化净化乙酸乙酯[J]. 催化学报, 2022, 43(2): 379-390. |
[10] | 张默, 李慧杰, 张峻豪, 吕红金, 杨国昱. 基于多金属氧酸盐催化剂的光驱动产氢研究进展[J]. 催化学报, 2021, 42(6): 855-871. |
[11] | 赵小雪, 李金择, 李鑫, 霍鹏伟, 施伟东. 金属有机框架(MOFs)基光催化剂的设计及其在太阳能燃料生产和污染物降解领域的研究进展[J]. 催化学报, 2021, 42(6): 872-903. |
[12] | 肖娟, 陈军伟, 欧祖翘, 赖俊杭, 俞同文, 王毅. 基于N-掺杂碳包覆Fe3N复合材料的高效异相电芬顿降解有机物[J]. 催化学报, 2021, 42(6): 953-962. |
[13] | 汤文杰, 陈娟荣, 尹正亮, 盛维琛, 林逢建, 许辉, 曹顺生. 铋改性TiO2单晶光催化剂的制备及其完全去除酚类污染物[J]. 催化学报, 2021, 42(2): 347-355. |
[14] | 李强, 赵振环, 白晓霞, 童鑫, 岳帅, 罗晶莹, 于欣, 王珍妮, 王政, 李沛沛, 梁燕萍, 王志明. 可调控且稳定的SrMoO4等离激元共振用于增强的可见光驱动的氮还原[J]. 催化学报, 2021, 42(10): 1763-1771. |
[15] | 孟涤, 朱倩, 魏燕, 甄胜利, 段苒, 陈春城, 宋文静, 赵进才. 基于芳香胺化合物的光催化脱卤加氢[J]. 催化学报, 2020, 41(10): 1474-1479. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||